11 research outputs found

    Effect of high intratesticular estrogen on global gene expression and testicular cell number in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of estrogen receptors alpha and beta and aromatase in the testis has highlighted the important role of estrogens in regulating spermatogenesis. There is a wealth of information on the deleterious effects of fetal and neonatal exposure of estrogens and xenoestrogens in the testis, including spermiation failure and germ cell apoptosis. However, very little is known about gene transcripts affected by exogenous estradiol exposure in the testis. The objective of the present study was to unveil global gene expression profiles and testicular cell number changes in rats after estradiol treatment.</p> <p>Methods</p> <p>17beta-estradiol was administered to adult male rats at a dose of 100 micrograms/kg body weight in saline daily for 10 days; male rats receiving only saline were used as controls. Microarray analysis was performed to examine global gene expression profiles with or without estradiol treatment. Real time RT-PCR was conducted to verify the microarray data. In silico promoter and estrogen responsive elements (EREs) analysis was carried out for the differentially expressed genes in response to estradiol. Quantitation of testicular cell number based on ploidy was also performed using flow cytometry in rats with or without estradiol treatment.</p> <p>Results</p> <p>We found that 221 genes and expressed sequence tags (ESTs) were differentially expressed in rat testes treated with estradiol compared to the control; the microarray data were confirmed by real time RT-PCR. Gene Ontology analysis revealed that a number of the differentially expressed genes are involved in androgen and xenobiotic metabolism, maintenance of cell cytoskeleton, endocytosis, and germ cell apoptosis. A total of 33 up-regulated genes and 67 down-regulated genes showed the presence of EREs. Flow cytometry showed that estradiol induced a significant decrease in 2n cells (somatic and germ cells) and 4n cells (pachytene spermatocytes) and a marked increase in the number of elongated and elongating spermatids.</p> <p>Conclusions</p> <p>This study provides a novel insight into the molecular basis for spermiation failure and apoptosis caused by 17beta-estradiol and it also offers new mechanisms by which adult exposure to environmental estrogens can affect spermatogenesis and fertility.</p

    Tubulobulbar complex: Cytoskeletal remodeling to release spermatozoa

    No full text
    Abstract Tubulobulbar complexes (TBCs) are actin-based structures that help establish close contact between Sertoliā€“Sertoli cells or Sertoliā€“mature germ cells (spermatids) in the seminiferous tubules of the testes. They are actin-rich push-through devices that eliminate excess spermatid cytoplasm and prepare mature spermatids for release into the tubular lumen. Just prior to spermiation, the elongated spermatid interacts with the Sertoli cell via an extensive structure comprising various adhesion molecules called the apical ectoplasmic specialization which is partially replaced by the apical TBC, on the concave surface of the spermatid head. The sperm release process involves extensive restructuring, namely the disassembly and reassembly of junctions at the Sertoliā€“spermatid interface in the seminiferous epithelium. Based on the presence of different classes of molecules in the TBCs or the defects observed in the absence of TBCs, the main functions attributed to TBCs are elimination of excess spermatid cytoplasm, endocytosis and recycling of junctional molecules, shaping of the spermatid acrosome, and forming transient anchoring devices for mature spermatids before they are released. This review summarizes the recent findings that focus on the role of TBCs in cell cytoskeleton restructuring during sperm release in the testes and the molecular mechanism involved.</p

    Estrogen, through estrogen receptor 1, regulates histone modifications and chromatin remodeling during spermatogenesis in adult rats

    No full text
    <p>Estrogen receptors (ESR1 and ESR2) play crucial roles in various processes during spermatogenesis. To elucidate individual roles of ESRs in male fertility, we developed <i>in vivo</i> selective ESR agonist administration models. Adult male rats treated with ESR1 and ESR2 agonist for 60Ā days show spermatogenic defects leading to reduced sperm counts and fertility. While studying epigenetic changes in the male germ line that could have affected fertility, we earlier observed a decrease in DNA methylation and its machinery upon ESR2 agonist treatment. Here, we explored the effects on histone modifications, which could contribute to decreased male fertility upon ESR agonist administration. ESR1 agonist treatment affected testicular levels of histone modifications associated with active and repressed chromatin states, along with heterochromatin marks. This was concomitant with deregulation of corresponding histone modifying enzymes in the testis. In addition, there was increased retention of histones along with protamine deficiency in the caudal spermatozoa after ESR1 agonist treatment. This could be due to the observed decrease in several chromatin remodeling proteins implicated in mediating histone-to-protamine exchange during spermiogenesis. The activating and repressing histone marks in spermatozoa, which play a critical role in early embryo development, were deregulated after both the ESR agonist treatments. Together, these epigenetic defects in the male germ line could affect the spermatozoa quality and lead to the observed decrease in fertility. Our results thus highlight the importance of ESRs in regulating different epigenetic processes during spermatogenesis, which are crucial for male fertility.</p

    Estrogen signaling, through estrogen receptor Ī², regulates DNA methylation and its machinery in male germ line in adult rats

    No full text
    <p>Estrogen, through its receptors, regulates various aspects of spermatogenesis and male fertility. To understand the roles of estrogen receptors (ERĪ± and ERĪ²) in male fertility, we have developed <i>in vivo</i> selective ER agonist administration models. Treatment of adult male rats with ERĪ± or ERĪ² agonist for 60 d decreases fertility and litter size mainly due to increased pre- and post-implantation embryo loss. Since epigenetic mechanisms like DNA methylation play a crucial role in male fertility, we investigated the effects of the ER agonists on DNA methylation in spermatozoa. Treatment with ERĪ² agonist causes a significant decrease in DNA methylation both at the global level and at the <i>H19</i> differentially methylated region (DMR). This could be due to decrease in DNA methyltransferases in the testis upon ERĪ² agonist treatment. The hypomethylation observed at the <i>H19</i> DMR corroborates with aberrant expression of <i>Igf2</i> and <i>H19</i> imprinted genes in the resorbed embryos sired by ERĪ² agonist-treated males. Thus, our study demonstrates that ERĪ² regulates DNA methylation and methylating enzymes during adult rat spermatogenesis. Activation of estrogen signaling through ERĪ² could therefore cause DNA methylation defects leading to impaired male fertility. These results define a role for estrogen in epigenetic regulation of male germ line, suggesting that epigenetic insults by exposure to environmental estrogens could potentially affect male fertility.</p

    DNA methylation biomarkers to identify epigenetically abnormal spermatozoa in male partners from couples experiencing recurrent pregnancy loss

    No full text
    Previously, we showed that DNA methylation defects in spermatozoa from male partners of couples undergoing recurrent pregnancy loss (RPL) could be a contributing paternal factor. In the present study, we aimed to determine whether the methylation levels of selected imprinted genes can be used as diagnostic markers to identify epigenetically abnormal spermatozoa sample in these cases. The methylation levels of selected imprinted genes in spermatozoa, which were previously found to be differentially methylated, were combined into a probability score (between 0ā€“1) using multiple logistic regression. Different combinations of these genes were investigated using Receiver Operating Characteristic analysis, and the threshold values were experimentally validated in an independent cohort of 38 control and 45 RPL spermatozoa samples. Among the different combinations investigated, a combination of five imprinted genes comprising IGF2-H19 DMR, IG-DMR, ZAC, KvDMR, and PEG3 (AUCā€‰=ā€‰0.88) with a threshold value of 0.61 was selected with a specificity of 90.41% and sensitivity of 70%. The results from the validation study indicated that 97% of the control samples had probability scores below this threshold, whereas 40% of the RPL samples were above this threshold with a post-hoc power of 97.8%. Thus, this combination can correctly classify control samples and potentially identify epigenetically abnormal spermatozoa samples in the male partners of couples undergoing RPL. We propose that the combined DNA methylation levels of these imprinted genes can be used as a diagnostic tool to identify spermatozoa samples with epigenetic defects which could contribute to the pathophysiology of RPL and the couple could be counselled appropriately
    corecore