18 research outputs found

    Hypercholesterolemia promotes early renal dysfunction in apolipoprotein E-deficient mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aging and dyslipidemia are processes which can lead to deleterious consequences to renal function. Therefore, the aim of this study was to determine the effects of both hypercholesterolemia and aging on renal function in mice.</p> <p>Methods</p> <p>Male hypercholesterolemic apolipoprotein E-deficient mice (ApoE, n = 13) and age-matched C57BL/6 control mice (C57, n = 15) were studied at 2 (young) and 8 (adult) month-old. At each time point, animals were placed in metabolic cages for 24 hours to urine volume and urinary creatinine quantification. Blood samples were collected for serum cholesterol, urea and creatinine measurements. Glomerular filtration rate (GFR) was estimated through creatinine clearance determination. Mesangial expansion was evaluated by Periodic Acid Schiff staining, renal fibrosis was determined through Masson's trichrome staining and neuronal nitric oxide synthase (nNOS) expression in the kidney was performed by Western Blotting. To statistical analysis two-way ANOVA followed by Fisher's <it>post hoc </it>test was used.</p> <p>Results</p> <p>Total plasma cholesterol was increased about 5-fold in ApoE mice at both time points compared to C57 animals. At 2-month-old, GFR was already markedly reduced in ApoE compared to C57 mice (187 ± 28 vs 358 ± 92 μL/min, p < 0.05). Adult C57 (-77%) and ApoE (-50%) mice also presented a significant reduction of GFR. In addition, serum urea was significantly increased in young ApoE animals compared to C57 mice (11 ± 1.3 vs 7 ± 0.9 mmol/L, p < 0.01). A significant mesangial expansion was observed at 2-month old ApoE mice compared to C57 mice (35 ± 0.6 vs 30 ± 0.9%, respectively, p < 0.05), which was aggravated at 8-month old animals (40 ± 3 and 35 ± 3%, respectively). Tubulointersticial fibrosis was augmented at both young (17 ± 2%, p < 0.05) and adult (20 ± 1%, p < 0.05) ApoE mice compared to respective C57 age controls (8 ± 1 and 12 ± 2%, respectively). The expression of nNOS was markedly reduced in a time-dependent manner in both strains.</p> <p>Conclusions</p> <p>These data show that both hypercholesterolemia and aging contribute to the loss of renal function in mice.</p

    Inhibition of phosphodiesterase 5 restores endothelial function in renovascular hypertension

    Get PDF
    Background: the clipping of an artery supplying one of the two kidneys (2K1C) activates the renin-angiotensin (Ang) system (RAS), resulting in hypertension and endothelial dysfunction. Recently, we demonstrated the intrarenal beneficial effects of sildenafil on the high levels of Ang II and reactive oxygen species (ROS) and on high blood pressure (BP) in 2K1C mice. Thus, in the present study, we tested the hypothesis that sildenafil improves endothelial function in hypertensive 2K1C mice by improving the NO/ROS balance.Methods: 2K1C hypertension was induced in C57BL/6 mice. Two weeks later, they were treated with sildenafil (40 mg/kg/day, via oral) or vehicle for 2 weeks and compared with sham mice. At the end of the treatment, the levels of plasma and intrarenal Ang peptides were measured. Endothelial function and ROS production were assessed in mesenteric arterial bed (MAB).Results: the 2K1C mice exhibited normal plasma levels of Ang I, II and 1-7, whereas the intrarenal Ang I and II were increased (similar to 35% and similar to 140%) compared with the Sham mice. Sildenafil normalized the intrarenal Ang I and II and increased the plasma (similar to 45%) and intrarenal (+15%) Ang 1-7. the 2K1C mice exhibited endothelial dysfunction, primarily due to increased ROS and decreased NO productions by endothelial cells, which were ameliorated by treatment with sildenafil.Conclusion: These data suggest that the effects of sildenafil on endothelial dysfunction in 2K1C mice may be due to interaction with RAS and restoring NO/ROS balance in the endothelial cells from MAB. Thus, sildenafil is a promising candidate drug for the treatment of hypertension accompanied by endothelial dysfunction and kidney disease.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)State Agency for the Development of Science and Technology (FAPES/Universal)Univ Fed Espirito Santo, Hlth Sci Ctr, Lab Translat Physiol, Vitoria, ES, BrazilEmescam Sch Hlth Sci, Vitoria, ES, BrazilUniversidade Federal de São Paulo, Dept Med, Div Nephrol, São Paulo, BrazilUniv Fed Espirito Santo, Hlth Sci Ctr, Pharmaceut Sci Grad Program, Vitoria, ES, BrazilUniv Fed Paraiba, Hlth Sci Ctr, Dept Physiol & Pathol, BR-58059900 Joao Pessoa, PB, BrazilUVV, Pharmaceut Sci Grad Program, Vila Velha, ES, BrazilFed Inst Educ Sci & Technol IFES, Vila Velha, ES, BrazilUniversidade Federal de São Paulo, Dept Med, Div Nephrol, São Paulo, BrazilCNPq: 302582/2011-8CNPq: 476525/2012-8CNPq: 305188/2012-7CNPq: 473177/2013-7State Agency for the Development of Science and Technology (FAPES/Universal): 012/2011State Agency for the Development of Science and Technology (FAPES/Universal): 54498465CNPq: 012/2009Web of Scienc

    Sildenafil ameliorates oxidative stress and DNA damage in the stenotic kidneys in mice with renovascular hypertension

    Get PDF
    Background: Oxidative stress and DNA damage have been implicated in the pathogenesis of renovascular hypertension induced by renal artery stenosis in the two-kidney, one-clip (2K1C) Goldblatt model. Considering our previous report indicating that the chronic blockade of phosphodiesterase 5 with sildenafil (Viagra (R)) has marked beneficial effects on oxidative stress and DNA damage, we tested the hypothesis that sildenafil could also protect the stenotic kidneys of 2K1C hypertensive mice against oxidative stress and genotoxicity.Methods: the experiments were performed with C57BL6 mice subjected to renovascular hypertension by left renal artery clipping. Two weeks after clipping, the mice were treated with sildenafil (40 mg/kg/ day for 2 weeks, 2K1C-sildenafil group) or the vehicle (2K1C). These mice were compared with control mice not subjected to renal artery clipping (Sham). After hemodynamic measurements, the stenotic kidneys were assessed using flow cytometry to evaluate cell viability and the comet assay to evaluate DNA damage. Measurements of intracellular superoxide anions and hydrogen peroxide levels as well as nitric oxide bioavailability were also obtained.Results: Sildenafil treatment significantly reduced mean arterial pressure (15%), heart rate (8%), intrarenal angiotensin II (50%) and renal atrophy (36%). in addition, it caused a remarkable decrease of reactive oxygen species production. On the other hand, sildenafil increased nitric oxide levels relative to those in the nontreated 2K1C mice. Sildenafil treatment also significantly reduced the high level of kidney DNA damage that is a characteristic of renovascular hypertensive mice.Conclusions: Our data reveal that sildenafil has a protective effect on the stenotic kidneys of 2K1C mice, suggesting a new use of phosphodiesterase 5 inhibitors for protection against the DNA damage observed in the hypoperfused kidneys of individuals with renovascular hypertension. Further translational research is necessary to delineate the mechanisms involved in the prevention of renal stenosis in the clinical setting.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)State Agency for the Development of Science and Technology (FAPES)Univ Fed Espirito Santo, Hlth Sci Ctr, Lab Translat Physiol, Vitoria, ES, BrazilUniv Fed Paraiba, Hlth Sci Ctr, Dept Physiol & Pathol, BR-58059900 Joao Pessoa, Paraiba, BrazilUniversidade Federal de São Paulo, Dept Med, Div Nephrol, São Paulo, BrazilUniv Vila Velha, Pharmaceut Sci Grad Program, Vila Velha, ES, BrazilFed Inst Educ Sci & Technol IFES, Vila Velha, ES, BrazilUniversidade Federal de São Paulo, Dept Med, Div Nephrol, São Paulo, BrazilCNPq: 302582/2011-8CNPq: 476525/2012-8CNPq: 305188/2012-7CNPq: 473177/2013-7State Agency for the Development of Science and Technology (FAPES): 54498465CNPq: 012/2009Web of Scienc

    Celebrating Twenty Years of the Brazilian Symposium on Cardiovascular Physiology

    No full text
    This e-book is dedicated to the celebration of 20 years of the Brazilian Symposium on Cardiovascular Physiology. In 1996 groups from the School of Medicine of Ribeirao Preto, University of Sao Paulo (FMRP-USP) and from the Federal University of Sao Paulo (UNIFESP) joined together to discuss cardiovascular physiology. In subsequent editions of the meeting, the participation of other groups from all over the country has grown and acquired the status of a national symposium. The participants now agree that the symposium should be itinerant and that the chair group is responsible for its organization. In 2016, we proudly reached the 20th edition of the Brazilian Symposium on Cardiovascular Physiology. It is certainly a memorable date and a great opportunity to share the accomplishments of Brazilian groups in the field of cardiovascular physiology

    New Translational Insights on Metabolic Syndrome: Obesity, Hypertension, Diabetes and Beyond

    No full text
    Metabolic syndrome (MetS) can be considered as a clustering of several risk factors such as obesity, hypertension, insulin resistance and dyslipidemia, which could lead to the development of diabetes and cardiovascular diseases (CVD). There are several underlying causes for MetS including overweight, physical inactivity and genetic factors. However, the underlying mechanisms that leads to MetS are still poorly understood. Therefore, the aim of this E-book is to provide a space where researchers holding different backgrounds could shed some light onto the pathophysiology of different risk factors involved in MetS, mostly from translational research worldwide

    Inhibition of PDE5 restores depressed baroreflex sensitivity in renovascular hypertensive rats

    No full text
    Renal artery stenosis is frequently associated with resistant hypertension, which is defined as failure to normalize blood pressure (BP) even when combined drugs are used. Inhibition of PDE5 by sildenafil has been shown to increase endothelial function and decrease blood pressure in experimental models. However, no available study evaluated the baroreflex sensitivity nor autonomic balance in renovascular hypertensive rats treated with sildenafil. In a translational medicine perspective, our hypothesis is that sildenafil could improve autonomic imbalance and baroreflex sensitivity, contributing to lower blood pressure. Renovascular hypertensive 2-kidney-1-clip (2K1C) and sham rats were treated with sildenafil (45 mg/Kg/day) during 7 days. At the end of treatment, BP and heart rate (HR) were recorded in conscious rats after a 24-hour-recovery period. Spontaneous and drug-induced baroreflex sensitivity and autonomic tone were evaluated; in addition, lipid peroxidation was measured in plasma samples. Treatment was efficient in increasing both spontaneous and induced baroreflex sensitivity in treated hypertensive animals. Inhibition of PDE5 was also capable of ameliorating autonomic imbalance in 2K1C rats and decreasing systemic oxidative stress. Taken together, these beneficial effects resulted in significant reductions in BP without affecting HR. We suggest that sildenafil could be considered as a promising alternative to treat resistant hypertension

    Glial Cells Are Involved in ANG-II-Induced Vasopressin Release and Sodium Intake in Awake Rats

    No full text
    It is known that circulating angiotensin II (ANG-II) acts on the circumventricular organs (CVOs), which partially lack a normal blood-brain barrier, to stimulate pressor responses, vasopressin (AVP), and oxytocin (OT) secretion, as well as sodium and water intake. Although ANG-II type 1 receptors (AT1R) are expressed in neurons and astrocytes, the involvement of CVOs glial cells in the neuroendocrine, cardiovascular and behavioral responses induced by central ANG II remains to be further elucidated. To address this question, we performed a set of experiments combining in vitro studies in primary hypothalamic astrocyte cells (HACc) and in vivo intracerebroventricular (icv) microinjections into the lateral ventricle of awake rats. Our results showed that ANG-II decreased glutamate uptake in HACc. In addition, in vivo studies showed that fluorocitrate (FCt), a reversible glial inhibitor, increased OT secretion and mean arterial pressure (MAP) and decreased breathing at rest. Furthermore, previous FCt decreased AVP secretion and sodium intake induced by central ANG-II. Together, our findings support that CVOs glial cells are important in mediating neuroendocrine and cardiorespiratory functions, as well as central ANG-II-induced AVP release and salt-intake behavior in awake rats. In the light of our in vitro studies, we propose that these mechanisms are, at least in part, by ANG-II-induced astrocyte mediate reduction in glutamate extracellular clearance

    Reactive oxygen species in the paraventricular nucleus of the hypothalamus alter sympathetic activity during metabolic syndrome.

    Get PDF
    The paraventricular nucleus of the hypothalamus (PVN) contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II), which activates AT1 receptors in the circumventricular organs (OCVs), mainly in the subfornical organ (SFO). Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS), leading to increases in sympathetic nerve activity (SNA). Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS): dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS

    Adipokines, diabetes and atherosclerosis: an inflammatory association

    Get PDF
    Cardiovascular diseases can be considered the most important cause of death in diabetic population and diabetes can in turn increase the risk of cardiovascular events. Inflammation process is currently recognized as responsible for the development and maintenance of diverse chronic diseases, including diabetes and atherosclerosis. Considering that adipose tissue is an important source of adipokines, which may present anti and proinflammatory effects, the aim of this review is to explore the role of the main adipokines in the pathophysiology of diabetes and atherosclerosis, highlighting the therapeutic options that could arise from the manipulation of these signaling pathways both in humans and in translational models
    corecore