18 research outputs found

    Leishmania lipophosphoglycan activates the transcription factor activating protein 1 in J774A.1 macrophages through the extracellular signal-related kinase (ERK) and p38 mitogen-activated protein kinase

    Get PDF
    Leishmania donovani is an obligatory intracellular pathogen that resides and multiplies in the phagolysosomes of macrophages. The outcome of this infection depends on the balance between the host ability to activate macrophage killing and the parasite ability to suppress or evade this host immune response. Lipophosphoglycan (LPG) glycoconjugate, the surface molecule of the protozoan parasite is a virulence determinant and a major parasite molecule involved in this process. In this study, we examined the ability of Leishmania and its surface molecule, lipophosphoglycan to activate activating protein 1 (AP-1) through the mitogen-activated protein kinase (MAPK) cascade. We report here that the Leishmania surface molecule, lipophosphoglycan stimulates the simultaneous activation of all three classes of MAP kinases, extracellular signal-related kinases (ERKs), the c-jun amino-terminal kinase (JNK) and the p38 MAP kinase with differential kinetics in J774A.1 macrophage cell line. Furthermore, both L. donovani and its surface molecule lipophosphoglycan resulted in a dose- and time-dependent induction of AP-1 DNA-binding activity. We have also shown a dose-dependent increase of AP-1 binding activity in both low and high virulent strains of parasite. The use of inhibitors selective for ERK (PD98059) and p38 (SB203580) pathway showed that pre-incubation of cells with either SB203580 or PD98059 affected the binding activity of AP-1 suggesting that both p38 and ERK MAP kinase activation appear to be necessary for AP-1 activation by LPG. Lipophosphoglycan induced IL-12 production and generation of nitric oxide in murine macrophages. These results demonstrate that L. donovani LPG activates pro-inflammatory, endotoxin-like response pathway in J774A.1 macrophages and the interaction may play a pivotal role in the elimination of the parasite

    MiR-153 targets the nuclear factor-1 family and protects against teratogenic effects of ethanol exposure in fetal neural stem cells

    Get PDF
    Ethanol exposure during pregnancy is an established cause of birth defects, including neurodevelopmental defects. Most adult neurons are produced during the second trimester-equivalent period. The fetal neural stem cells (NSCs) that generate these neurons are an important but poorly understood target for teratogenesis. A cohort of miRNAs, including miR-153, may serve as mediators of teratogenesis. We previously showed that ethanol decreased, while nicotine increased miR-153 expression in NSCs. To understand the role of miR-153 in the etiology of teratology, we first screened fetal cortical NSCs cultured ex vivo, by microarray and quantitative RT-PCR analyses, to identify cell-signaling mRNAs and gene networks as important miR-153 targets. Moreover, miR-153 over-expression prevented neuronal differentiation without altering neuroepithelial cell survival or proliferation. Analysis of 3′UTRs and in utero over-expression of pre-miR-153 in fetal mouse brain identified Nfia (nuclear factor-1A) and its paralog, Nfib, as direct targets of miR-153. In utero ethanol exposure resulted in a predicted expansion of Nfia and Nfib expression in the fetal telencephalon. In turn, miR-153 over-expression prevented, and partly reversed, the effects of ethanol exposure on miR-153 target transcripts. Varenicline, a partial nicotinic acetylcholine receptor agonist that, like nicotine, induces miR-153 expression, also prevented and reversed the effects of ethanol exposure. These data collectively provide evidence for a role for miR-153 in preventing premature NSC differentiation. Moreover, they provide the first evidence in a preclinical model that direct or pharmacological manipulation of miRNAs have the potential to prevent or even reverse effects of a teratogen like ethanol on fetal development

    Transcriptomic and phenotypic analysis of murine embryonic stem cell derived BMP2+ lineage cells: an insight into mesodermal patterning

    Get PDF
    Transcriptome analysis of BMP2+ cells in comparison to the undifferentiated BMP2 ES cells and the control population from 7-day old embryoid bodies led to the identification of 479 specifically upregulated and 193 downregulated transcripts

    Effect of Leishmania donovani lipophosphoglycan on ornithine decarboxylase activity in macrophages

    No full text
    Lipophosphoglycan (LPG), a major surface molecule from Leishmania donovani, stimulated ornithine decarboxylase (ODC) activity in macrophages in a dose- and time-dependent manner. LPG stimulated the rapid increase in ODC activity within 30 min after exposure, suggesting that the interaction of LPG with its receptor stimulated a specific signal transduction pathway. However, LPG-induced ODC activity was a transient event because 3 hr after exposure to LPG, no stimulation of ODC activity was detectable. ODC activity appeared to be coupled to the activation of protein kinase C (PKC) in macrophages, as activators of PKC caused a rapid increase in the ODC activity. Macrophages pretreated with LPG for 1 hr became unresponsive to subsequent stimulation by the PKC activators 1-oleoyl-2-acetyl-glycerol and the calcium ionophore A23187. In contrast, the ability of macrophages to express ODC activity in response to the cyclic AMP analogue dibutyryl cyclic AMP was not impaired by LPG

    Plasma miRNA Profiles in Pregnant Women Predict Infant Outcomes following Prenatal Alcohol Exposure

    Get PDF
    <div><p>Fetal alcohol spectrum disorders (FASD) are difficult to diagnose since many heavily exposed infants, at risk for intellectual disability, do not exhibit craniofacial dysmorphology or growth deficits. Consequently, there is a need for biomarkers that predict disability. In both animal models and human studies, alcohol exposure during pregnancy resulted in significant alterations in circulating microRNAs (miRNAs) in maternal blood. In the current study, we asked if changes in plasma miRNAs in alcohol-exposed pregnant mothers, either alone or in conjunction with other clinical variables, could predict infant outcomes. Sixty-eight pregnant women at two perinatal care clinics in western Ukraine were recruited into the study. Detailed health and alcohol consumption histories, and 2<sup>nd</sup> and 3<sup>rd</sup> trimester blood samples were obtained. Birth cohort infants were assessed by a geneticist and classified as unexposed (UE), heavily prenatally exposed and affected (HEa) or heavily exposed but apparently unaffected (HEua). MiRNAs were assessed in plasma samples using qRT-PCR arrays. ANOVA models identified 11 miRNAs that were all significantly elevated in maternal plasma from the HEa group relative to HEua and UE groups. In a random forest analysis classification model, a combination of high variance miRNAs, smoking history and socioeconomic status classified membership in HEa and UE groups, with a misclassification rate of 13%. The RFA model also classified 17% of the HEua group as UE-like, whereas 83% were HEa-like, at least at one stage of pregnancy. Collectively our data indicate that maternal plasma miRNAs predict infant outcomes, and may be useful to classify difficult-to-diagnose FASD subpopulations.</p></div

    Random Forest Analysis (RFA) classifies HEa and UE maternal samples into distinct groups.

    No full text
    <p>(a) RFA analysis comparing HEa and UE groups at mid (MP) and late (LP) pregnancy resulted in an overall classification error rate of 13% (18.2% for the HEa group and 8.7% for the UE group). miRNAs constituted 7 out of the top 10 variables that contributed to classification accuracy. Graph depicts Mean Decrease Accuracy (the effect of permuting a variable on prediction after training) on the X-axis and contributory variables in order of decreasing importance on the Y-axis. Astrisks indicate miRNA variables that contributed to prediction accuracy at mid- and late-pregnancy. (b) RFA analysis with difference in miRNA expression (ΔΔCT) between mid and late pregnancy. The overall misclassification rate increased to 24.4%. However, a plot of ‘Mean Decrease Accuracy’ (Y-axis) against variables (X-axis) showed that miRNAs constituted 6 out of the top 10 predictive variables. miRNAs in red text represent variables present in both model 1 and 2. For additional details, see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0165081#pone.0165081.s006" target="_blank">S4 Fig</a>. Smokstat, sescat, parity and momage are as defined in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0165081#pone.0165081.t001" target="_blank">Table 1</a>, CSEX is as defined in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0165081#pone.0165081.t002" target="_blank">Table 2</a>.</p
    corecore