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Leishmanialipophosphoglycan activates the transcription factor
activating protein 1 in J774A.1 macrophages through the

extracellular signal-related kinase (ERK) and p38
mitogen-activated protein kinase
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Leishmania donovaniis an obligatory intracellular pathogen that resides and multiplies in the phagolysosomes of macropha
utcome of this infection depends on the balance between the host ability to activate macrophage killing and the parasite ability
r evade this host immune response. Lipophosphoglycan (LPG) glycoconjugate, the surface molecule of the protozoan parasite is
eterminant and a major parasite molecule involved in this process. In this study, we examined the ability ofLeishmaniaand its surfac
olecule, lipophosphoglycan to activate activating protein 1 (AP-1) through the mitogen-activated protein kinase (MAPK) cascade.
ere that theLeishmaniasurface molecule, lipophosphoglycan stimulates the simultaneous activation of all three classes of MAP
xtracellular signal-related kinases (ERKs), thec-jun amino-terminal kinase (JNK) and the p38 MAP kinase with differential kinetic
774A.1 macrophage cell line. Furthermore, bothL. donovaniand its surface molecule lipophosphoglycan resulted in a dose- and
ependent induction of AP-1 DNA-binding activity. We have also shown a dose-dependent increase of AP-1 binding activity in bot
igh virulent strains of parasite. The use of inhibitors selective for ERK (PD98059) and p38 (SB203580) pathway showed that pre-
f cells with either SB203580 or PD98059 affected the binding activity of AP-1 suggesting that both p38 and ERK MAP kinase a
ppear to be necessary for AP-1 activation by LPG. Lipophosphoglycan induced IL-12 production and generation of nitric oxide
acrophages. These results demonstrate thatL. donovaniLPG activates pro-inflammatory, endotoxin-like response pathway in J77
acrophages and the interaction may play a pivotal role in the elimination of the parasite.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Leishmaniaare protozoan parasites that are responsible
or severe morbidity and mortality in infected people in sev-
ral parts of the world.Leishmaniaspecies multiply within

he mammalian macrophages. Interaction betweenLeishma-
ia and macrophage molecules ultimately affects the patho-
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logical and immunological responses toLeishmaniainfec-
tion. The outcome of infection withLeishmania majoris to a
large extent dependent on the genetics of the host[1]. Inter-
action withLeishmaniainduces Th1 cell-mediated immu
responses in C57BL/6 resistant mice and Th2-type resp
in susceptible BALB/c mice leading to intracellular cleara
or survival of the parasite, respectively[1]. The signal trans
duction mechanisms that determine these polarized resp
are still poorly understood.

Leishmaniasurface molecule lipophosphoglycan (LP
glycoconjugate is a virulence factor that binds to ma
phages and has significant effects on macrophage fun
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[2]. LeishmaniaLPG has been reported to activate innate im-
mune signaling pathways in macrophages through Toll-like
receptors (TLR) leading to activation of pro-inflammatory
cytokine synthesis thereby increasing the effective destruc-
tion of the parasite[3]. On the other hand, the survival of
the parasite has been shown to be associated with the abil-
ity of its surface molecule, lipophosphoglycan glycoconju-
gate to regulate production of both NO[4] and IL-12 in
macrophages[5]. Leishmaniasurface molecule lipophospho-
glycan has been reported to participate in a variety of pro-
cesses during the establishment of infection within the mam-
malian cells, like impairment of macrophage signal trans-
duction pathways, modulation of immunomodulatory effec-
tor molecules like inducible form of NO synthase (iNOS) and
cytokines, resistance to oxygen radicals, resistance to com-
plement mediated lysis and inhibition of phagosomal matu-
ration [4–11]. The early recognition of the parasite-derived
molecules by the innate immune system and further relay of
the signal to the adaptive immune system is a crucial step
towards polarized response.

Leishmania donovanipromastigotes have been reported
to evade the activation of mitogen-activated protein ki-
nases (MAPK) during infection of naive macrophages[12].
The MAP kinases play an important role as signal kinases
and cause phosphorylation and thereby control the acti-
vation status of transcription factors. These kinases form
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2. Materials and methods

2.1. Reagents and antibodies

Reagents used were obtained from Sigma Chemical Co.
(St. Louis, MO) unless indicated otherwise. Antibodies used
against all MAP kinase family members were obtained
from Santa Cruz Biotechnology Inc., (Santa Cruz, CA).
Horseradish peroxidase-conjugated anti-mouse IgG and anti-
rabbit IgG antibodies were obtained from Bio-Rad (Hercules,
CA). PD98059 and SB203580 were obtained from Santa
Cruz Biotechnology Inc., (Santa Cruz, CA).

2.2. Parasite culture

L. donovaniAG83 (MHOM/IN/1983/AG83) promastig-
otes were cultured at 22◦C in modified M199 medium
(Sigma, St. Louis, MO) supplemented with 100 U ml−1 peni-
cillin (Sigma, St. Louis, MO), 100�g ml−1 streptomycin
(Sigma, St. Louis, MO), and 10% heat inactivated fetal calf
serum (FCS) (Biological Industries, Kibbutz Beit Haemek,
Israel). All the infectivity assays were done using virulent
parasites (except where indicated otherwise) that were main-
tained in BALB/c mice. All parasites used in this study were
taken from stationary phase cultures. Amastigotes were iso-
lated from spleens as previously described and transformed
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s ained
a
w . The
r this
w

2

an
T his
s
1 with
1
F s
w sity of
1 sed
f

2

ice
w Cl
a lastic
s HCl
( 1%
N F,
1 F)
a u-
b d at
link between transmembrane signaling and gene in
ion in the nucleus. Three major subgroups of MAP
ases in mammalian cells are extracellular signal-regu
inases 1 and 2, thec-jun amino-terminal kinases (JNK
nd the p38 MAP kinase[13,14]. These MAP kinase
re an important group of serine/threonine signaling
ases.

Down stream cascade of these kinases are the ubiq
ranscription factors such as activating protein 1 (AP-1),
B and IFN regulatory factors (IRFs). IFN regulatory fac
nd NF-�B activation has been shown to play a key r

n the induction of macrophage effector molecules[15–18]
nd are involved in regulation of functions involved in h
efense and inflammation. The role of AP-1 family me
ers in transcriptional regulation is controlled by a num
f well-characterized mechanisms[19–24]. The genes cod

ng AP-1 proteins (Fos and Jun) are often among the
enes to be transcribed after stimulation of a cell and
sually transiently expressed. The AP-1 protein functio
egulated primarily by phosphoregulation[25–27]The AP-1
amily members differ in their ability to repress transcript
28,29]. In the present work, we report that the interac
f J774A.1 macrophages withLeishmaniaLPG resulted in

he activation of MAP kinase cascade and this activation
ecessary for the induction of activated transcription fact
hese results suggest that activation of J774A.1 macrop
y LeishmaniaLPG may lead to effective destruction of t
arasite and may therefore be significant for the regulati
arasitological and immunological responses toLeishmania

nfection.
o promastigotes in M199 medium containing 30% fetal
erum. Freshly transformed promastigotes were maint
t 22◦C in M199 with 10% fetal calf serum[30]. Animals
ere used in accordance with the institutional guidelines

elevant committee duly approved the use of animals for
ork.

.3. Macrophage culture

A murine macrophage cell line J774A.1 (Americ
ype Culture Collection, Rockville, MD) was used in t
tudy. The macrophages were maintained at 37◦C in RPMI
640 medium (Sigma, St. Louis, MO) supplemented
00 U ml−1 penicillin, 100�g ml−1 streptomycin and 10%
CS in an atmosphere of 5% CO2 in air. The macrophage
ere seeded onto tissue culture plates (60 mm) at a den
× 106 cells/plate and incubated for 24 h before being u

or the requisite assay.

.4. Preparation of cell lysates

Stimulated cells (1× 106 per sample) were washed tw
ith ice-cold TBS (50 mM Tris–HCl (pH 7.4), 400 mM Na
nd 1 mM sodium orthovanadate) and harvested with a p
craper. The cells were lysed in lysis buffer (50 mM Tris–
pH 7.4), 400 mM NaCl, 1 mM sodium orthovanadate,
onidet P-40, 1 mM EDTA, 1 mM EGTA, 10 mM Na
mM DTT, 1 mM phenylmethylsulfonyl fluoride (PMS
nd 0.5�g ml−1 each of leupeptin and aprotinin) by inc
ation on ice for 30 min. Lysate was then centrifuge



S. Balaraman et al. / Molecular & Biochemical Parasitology 139 (2005) 117–127 119

(15,000× g) at 4◦C for 10 min, and supernatant was trans-
ferred to fresh tubes and stored at−80◦C till required. Protein
concentration of the lysates was determined using a coloro-
metric assay against a BSA standard[31].

2.5. Western blot analysis

Cell lysates were resolved by sodium dodecyl sulfate-
10% polyacrylamide gel electrophoresis (SDS-PAGE) be-
fore transferring to nitrocellulose membrane using a trans-
blot system (Bio-Rad). Nitrocellulose filter was then incu-
bated with TBST (50 mM Tris–HCl (pH 7.5), 150 mM NaCl,
and 0.05% Tween 20) containing 5% skimmed milk for at
least 2 h to block nonspecific protein binding. Primary anti-
bodies were diluted in TBST and applied to the filter for at
least 2 h at room temperature. The blots were washed with
TBST thrice and incubated with the appropriate horseradish
peroxidase-conjugated secondary antibody (diluted up to
1:5000 in TBST) for 1 h at room temperature. Immunore-
active bands were visualized by the enhanced chemilumines-
cence system from Santa Cruz Biotechnology Inc., (Santa
Cruz, CA). Autoradiograms of the phosphorylated proteins
were analyzed by using model FLA 5000 imaging densit-
ometer (Fuji, Japan). The results shown are from a single
experiment typical of at least two giving identical results.
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method of Bradford[31]. Binding reactions were initiated
by incubating nuclear extract (4–6�g protein) with double
stranded poly (dI-dC) (1�g�l−1) (Pharmacia Biotech, St.
Albans, UK), under specific salt/pH conditions in a bind-
ing buffer (20 mM HEPES (pH 7.9), 3.4% glycerol, 1.5 mM
MgCl2, 1.0 mM DTT) and 1.0 ng�l−1 of 5′ end32P-labeled
dsDNA oligonucleotide in a total volume of 60�l. Dou-
ble stranded DNA (dsDNA, 10 ng) was labeled with [�-
32P] ATP and T4 polynucleotide kinase in a kinase buffer
(New England Biolabs, Beverley, MA). This mixture was in-
cubated for 30 min at 37◦C, and the reaction was stopped
with 5�l of 0.2 M EDTA. The labeled oligonucleotide was
extracted with phenol/chloroform and passed through G-
50 sephadex column. The dsDNA oligonucleotide, which
was used as a probe contained the AP-1 consensus se-
quence (5′CGCTTGATGAGTCAGCCGGAA3′). Oligonu-
cleotide was kindly gifted by Dr. Shekhar Reddy, John Hop-
kins University, Baltimore, USA. The specificity of binding
was also examined by competition with 10–100-fold mo-
lar excess of the unlabeled dsDNA AP-1 oligonucleotide by
adding simultaneously with the labeled probe. The resultant
DNA-protein complexes were resolved by non-denaturing
8% (w/v) polyacrylamide gels. The gels were subsequently
dried and autoradiographed. Visualization and quantitation of
radioactive bands were conducted by PhosphorImager (Fuji
film BAS-1800, Japan) using Image Quant software. The re-
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.6. Isolation and quantitation of lipophosphoglycan
LPG)

Purified LPG fromL. donovanipromastigotes, at the s
ionary phase of growth, was isolated as previously desc
32,33]. The LPG, thus, obtained was dissolved in phosph
uffered saline (PBS) or complete medium and the con
ration was estimated by determining the amount of he
n the extract[34].

.7. Electrophoretic mobility shift assays (EMSA)

For the preparation of nuclear extracts[35,36], the treate
ells were washed twice with ice-cold phosphate-buff
aline before resuspending in 1 ml cold hypotonic “low
uffer” buffer A (20 mM HEPES buffer (pH 7.9), 20% gly
rol, 10 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, and
.2% Triton X-100, 0.2 mM PMSF, 0.4�g ml−1 leupeptin
�g ml−1 aprotinin, and 0.2 mM DTT). The cells were

owed to swell on ice for 20 min, then centrifuged at 1000× g
t 4◦C for 15 min and the resulting nuclear pellet was
uspended in 30�l ice-cold “high salt buffer” buffer B
20 mM HEPES buffer (pH 7.9), 20% glycerol, 500 m
aCl, 1.5 mM MgCl2, 0.2 mM EDTA, and 0.2% Trito
-100, 0.1 mM PMSF, 0.2�g ml−1 leupeptin, 0.5�g ml−1

protinin, and 0.1 mM DTT) by occasionally tapping
uclear pellet on ice for 1 h. The nuclear extract was

rifuged at 13,000× g for 10 min at 4◦C and the supe
atant was collected and stored in aliquots at−80◦C until
se. The protein content of the extract was measured b
ults shown are from a single experiment typical of at l
wo or three giving identical results.

.8. Nitrite assay

Macrophages (5× 105 cells/well) were cultured in a 96
ell tissue culture plate in the presence of different con

rations of LPG or LPS. The release of nitrite by LPG w
ssayed from the cultured supernatants at 24 h using

rophotometric method based on the Griess reaction[37].

.9. Cytokine measurement

J774A.1 cells were plated in 100�l of the media at 5× 105

ells/well in a 96-well plate. Cells were allowed to adh
vernight, and then stimulated with LPG (10�g ml−1) or LPS
1�g ml−1). The concentration of IL-12p40 in culture sup
atants was determined by the enzyme linked immunoso
ssay (ELISA). The assay was performed using Opt EIA
Pharmingen, SanDiego, CA) according to manufactu
nstructions. Cytokine concentration was determined us
tandard curve using recombinant murine IL-12p40.

. Results

.1. Effect of LPG on ERK, JNK and p38 MAP kinase in
urine macrophages

To verify whether LPG stimulates the ERK1, ERK2, p
nd JNK MAP kinase signal transduction pathway, J774
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Fig. 1. Time course of LPG and LPS induced phosphorylation of MAP kinases. J774A.1 cells were stimulated with LPG (10�g ml−1) or LPS (1�g ml−1) and
harvested at the indicated times (0–150 min). Whole cell lysates were resolved by SDS-PAGE (10%), followed by immunoblotting using a set of antibodies that
recognized either activated (dually phosphorylated on Tyr/Thr) or total MAP kinase expression. (A): (a) anti-total ERK1 and ERK2 (b) anti-phospho-ERK1
and ERK2. (B): (a) anti-total p38 MAP kinase and (b) anti-phospho-p38 MAP kinase. (C): anti-phospho-JNK. Effect of LPS on ERK1 and ERK2 (D), p38 (E),
and JNK (F) activation after different stimulation times is also shown. Fold increases in ERK1, ERK2, P38 and JNK activation are shown below each lane for
each blot. The data shown are from two experiments that yielded similar results.

cells (1× 106 cells/ml) were treated with 10�g ml−1 of LPG.
Cell lysates were prepared at different time points after the
beginning of the stimulation.

The role of ERK, JNK and p38 MAP kinase pathways in
LPG signal transduction in macrophages is shown inFig. 1.
The activation of the three MAP kinases was investigated by
detecting their phosphorylated forms by Western blotting us-

Fig. 2. Induction of AP-1-DNA complex byL. donovaniand its surface molecule lipophosphoglycan in macrophage cell line, J774A.1. Macrophages
(1× 106 cells/ml) were incubated with indicated concentrations ofL. donovaniat 37◦C for 1 h. Nuclear extracts were prepared as described under Sec-
tion 2 and analyzed for the AP-1-DNA-binding activity by EMSA. (A): binding reactions with unlabeled excesses of AP-1 consensus oligonucleotide. J774A.1
cells were incubated for 1 h in the absence or the presence of LPG (10�g ml−1). Six microgram of each nuclear extract were incubated with�-32P-end-labeled
synthetic double-stranded AP-1 probe. Lane 1: free probe; lane 2: untreated J774A.1 cells; lane 3: J774A.1 cells incubated with LPG; Lanes 4 and 5: the
AP-1 specific band is competed away by 1- and 10-fold molar excess of an unlabeled synthetic wild-type (wt) AP-1 cold competitor. An arrow on the left side
indicates the position of the specific complex. (B) Dose-dependent activation of nuclear AP-1-DNA binding activity withL. donovani. (C) Dose-dependent
activation of nuclear AP-1-DNA binding activity with LPG. (D) Dose-dependent activation of AP-1-DNA binding activity with LPS. Fold increases in AP-1
activation are shown below each lane for each blot The data shown are from one of the three independent experiments that yielded similar results.

ing specific anti-phosphokinase antibodies. LPG stimulated
(within 5 min) increase in the levels of activation of both
ERK1 and ERK2 MAP kinase activities in J774A.1 cells.
ERK2 remained elevated even after 60 min above the low
basal levels of ERK activation in unstimulated J774A.1 cells.
A gradual decline in the levels of activation of ERK2 was
observed after 5 min (Fig. 1A-b). Significant but low levels



S. Balaraman et al. / Molecular & Biochemical Parasitology 139 (2005) 117–127 121



122 S. Balaraman et al. / Molecular & Biochemical Parasitology 139 (2005) 117–127

of activation of p38 MAP kinase was observed in unstim-
ulated J774A.1 cells. This slight activation is possibly due
to the presence of serum in the medium. A small dif-
ference was detected between cells cultured in the pres-
ence and absence of serum (data not shown). LPG stimu-
lated phosphorylation of p38, within 10 min and was sus-
tained for up to 60 min (Fig. 1B-b). LPG strongly stimulated
JNK MAP kinase following a lag period of 30 min before
reaching peak with maximum activity at 120 min (Fig. 1C).
These data indicate that LPG stimulates all three classes
of MAP kinase in macrophages, but with differential ki-
netics of activation. Lipopolysaccharide (LPS; 1�g ml−1),
known to activate ERK, JNK and p38 MAP kinases[9] in-
duced the phosphorylation of ERK1, ERK2, p38 and JNK
MAP kinases in J774A.1 macrophages (Fig. 1D–F). How-
ever, the kinetics of induction was different from that with
LPG.

3.2. L. donovani activates AP-1 transcription factor in
J774A.1 murine macrophages

We studied the effect of bothL. donovaniand Leish-
mania surface molecule, lipophosphoglycan on AP-1 tran-
scription factor in J774A.1 macrophage cell line. For AP-
1 consensus oligomer, a predominant DNA-protein com-
plex was revealed by EMSA. A low level of predominant
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for 30 min with polymyxin B (PB) (5�g ml−1). Pretreat-
ment of LPG andL. donovaniwith PB had no effect on the
AP-1 activation induced by LPG orL. donovaniin J774A.1
macrophages (data not shown). These data clearly demon-
strate that the effect ofL. donovaniand LPG were not due to
LPS.

The kinetics of AP-1 activation was determined by expos-
ing the J774A.1 cells toL. donovani(macrophage/parasite
ratio of 1:10) for different time intervals and the samples
were then analyzed by EMSA. Increase in AP-1 DNA bind-
ing activity was observed as early as 10 min and remained
steady for up to 120 min (Fig. 3A). However, a significant
decline in AP-1 binding activity was observed at 180 min. A
similar time dependent activation of DNA binding activity of
AP-1 was observed with LPG (10�g ml−1). The DNA bind-
ing activity increased at 10 min and remained stable for up
to 120 min (Fig. 3B). A significant decline in AP-1 binding
activity was observed at 180 min.

We investigated if cellular uptake ofL. donovaniis re-
quired for AP-1 activation. Cytochalasin B is an actin-
depolymerizing drug that inhibits bacterial invasion and
phagocytosis[38,39]. We examined the effect of cytocha-
lasin B onLeishmaniainduced AP-1 activation. Inhibition
of cellular invasion by pretreating the cells with cytochalasin
B for 15 min followed by incubation withL. donovanifor
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P-1 consensus probe-binding complex was present i
reated nuclei. Following treatment with LPG at 10�g ml−1,

noticeable increase of this constitutive form of AP-1
bserved by 1 h (Fig. 2A). To demonstrate that the DN
ligomer-protein complexes formed in the EMSA rep
ent specific molecular interactions, unlabeled probe
etition experiments were performed (Fig. 2A). The corre
ponding unlabeled probe strongly competes for com
ormation. These data indicate that the proteins activ
y LPG and detected by EMSA were highly specific
P-1.
Incubation of J774A.1 cells with macrophage/parasit

io of 1:10 or 1:20 for 1 h at 37◦C activated AP-1 (Fig. 2B).
ctivation was dependent on the concentration ofL. dono-
ani with parasite/macrophage ratio of 10:1 (correspon
o 1× 107 parasites) resulting in 3.3-fold activation of A

binding activity whereas higher parasite/macrophag
io, i.e., 20:1 (corresponding to 2× 107 parasites) resulted
.8-fold induction of AP-1 binding activity (Fig. 2B). AP-1
as also activated in cells treated with lipophosphogly
PG (10�g ml−1) resulted in 5.0-fold induction where
0�g ml−1 of LPG resulted in 4.8-fold induction (Fig. 2C)
hen compared with the untreated macrophages.

10�g ml−1) used to stimulate macrophages correspond
× 107 parasites/ml or equal to 1:20 macrophage/parasi

io. LPS was used as a positive control. LPS-treated J77
acrophages exhibited a significant increase in AP-1

ation over the unstimulated controls (Fig. 2D). In order to
emonstrate that the AP-1 activated byL. donovaniand LPG
as not due to LPS, we pretreatedL. donovaniand LPG
ifferent time intervals did not prevent activation of AP
y L. donovaniwhen compared to untreated cells (data
hown). The results clearly indicated that the activatio
P-1 does not require infectivity ofL. donovaniin the cells
nd its cellular uptake.

.3. Relationship of AP-1 activation to L. donovani
irulence

In order to check if there is any relationship betw
he virulence of the parasite and AP-1 activation, J774
ells were incubated with different concentrations of
her low virulent or high virulent strain ofL. donovanifor
h. The low virulent strain was passaged in the labora
ver several months and is therefore not infective in
ice model and the high virulent strain was maintaine
ALB/c mice. The low and high virulent strains differ

n their uptake by J774A.1 macrophages. At 24 h, the n
er of low virulent amastigotes in the infected macroph
as 109± 10 per 100 macrophages where as the numb
igh virulent parasites per 100 macrophages was 450± 25.
s shown in Fig. 4, both high (Fig. 4A) and low viru-

ent strains (Fig. 4B) of L. donovaniresulted in a dose
ependent increase in AP-1-DNA-binding activity. The a

ty of L. donovanito activate AP-1 was independent of
irulence.

.4. Role of ERK1, ERK2 and p38 MAP kinases in
egulation of AP-1 triggered by lipophosphoglycan

To further investigate the role of MAP kinase interme
tes in the signal transduction pathway resulting in the A
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Fig. 3. Kinetics of AP-1 activation byL. donovaniand its surface molecule lipophosphoglycan in J774A.1 macrophage cell line. J774A.1 cells were infected
with L. donovani(A) or treated with lipophosphoglycan (B) for the indicated times. The nuclear extracts prepared from these cells were analyzed by EMSA
for the AP-1-DNA-binding activity. Only the relevant part of EMSA with nuclear AP-1 activity J774A.1 cells is shown. The data shown are from one of the
three independent experiments that yielded similar results.

Fig. 4. Both low- and high-virulentL. donovaniactivated AP-1. J774A.1 cells were infected with high-virulent (A) and low-virulentL. donovani(B) at the
indicated concentrations for 1 h. The nuclear extracts were prepared from the infected cells and analyzed for the AP-1-DNA-binding activity by EMSA.The
data shown are from one of the two independent experiments that yielded similar results.
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activation, the effects of specific inhibitors on the activation
of this DNA binding factor were analyzed (Fig. 5A). Nu-
clear extracts were prepared from cells pretreated for 60 min
with either PD98059 (20�M), a specific inhibitor of ERK1
and ERK2 pathway, or SB203580 (5�M), a specific in-

hibitor of the p38 pathway followed by treatment with LPG
(10�g ml−1) for 60 min. A decrease in the binding activity of
AP-1 was observed when compared with controls stimulated
with LPG and not treated with the inhibitors. Pre-incubation
of cells with PD98059 (20�M) or SB203580 (5�M) inhib-

F
o
a
i
M
a

ig. 5. Effects of PD98059 and SB203580 on AP-1 binding activity induced
r medium for 1 h were stimulated with either LPG (10�g ml−1) (A) or LPS (1�

nalysis of these nuclear extracts was conducted using the�-32P-end-labeled syn
ndependent experiments that yielded similar results. Values in the histogr

eans, which differ significantly from that of the corresponding LPG-treated
re shown below each lane.
by LPG. J774A.1 cells pretreated with PD98059 (20�M), SB203580 (5�M),
g ml−1) (B) for further 1 h, and the nuclear protein were extracted. EMSA
thetic double-stranded AP-1 probe. The data shown are from one of the two
am represent the average of two determinations from independent experiments.

control are indicated by (* P< 0.05). Fold increases in AP-1 activation by LPS
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ited the binding activity of AP-1 by 54% and 68%, respec-
tively, over LPG-treated group suggesting that both ERK and
p38 MAP kinase activation appear to be necessary for AP-
1 activation. At these concentrations the inhibitors did not
cause cellular damage. Pretreatment of macrophages with
PD98059 (20�M) and SB203580 (5�M) followed by treat-
ment with LPS (1�g ml−1) did not effect the AP-1 bind-
ing activity when compared with LPS stimulated cells that
were not treated with the inhibitors (Fig. 5B). This indi-
cates that p38 and ERK MAP kinase activation is not nec-
essary for AP-1 activation by LPS in J774A.1 macrophage
cell line.

3.5. LPG induced nitric oxide in J774A.1 macrophages

Generation of NO by activated macrophages has been
correlated directly with the leishmanicidal capacity of the
cells [4]. L. major LPG has been reported to promote as
well as inhibit NO synthesis by the murine macrophages,
thereby playing an important role in the host–parasite re-
lationship [4]. LPG resulted in the present study, a dose-
dependent increase in the NO levels in J774A.1 macrophages
(Fig. 6A). LPS alone, as expected induced significant
NO synthesis (Fig. 6B). Polymyxin B had no effect on
NO synthesis by macrophages induced by LPG, whereas,
i not
s

F 4A.1
m ture
p A) or
L
s
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Fig. 7. LPG induces IL-12 levels in J774A.1 macrophages. Macrophages
were treated with either LPG (10�g/ml) or LPS (1�g ml−1) for 24 h before
supernatants were assayed for IL-12p40 production. All values represent
the mean± S.D. of average fold induction of triplicates samples. The data
shown is from one of the two independent experiments that yielded similar
results.

3.6. LPG activated IL-12 protein production in
macrophages

J774A.1 macrophages were treated with LPG
(10�g ml−1) or LPS (1�g ml−1). Supernatants were
collected 24 h later and assayed for IL-12p40 production by
ELISA. As shown inFig. 7, both LPS and LPG resulted in a
modest 3.1- and 3.5-fold increase, respectively, in IL-12p40
production over that of unstimulated cells.

4. Discussion

In this study, we examined the effects of leishmanial sur-
face molecule lipophosphoglycan on the activation of MAP
kinase pathway and AP-1 cascades in a murine macrophage
cell line J774A.1. It is well established that AP-1 activation,
resulting from the engagement of several different surface
receptors with their extracellular ligands, usually involves
the MAP kinase intermediates[20,23]. Our major finding is
that all three classes of MAP kinase, ERK, p38 and JNK
are simultaneously activated by LPG in macrophages with
maximal activation occurring between 10 and 150 min post-
stimulation in J774A.1 cell line.

Earlier reports have shown thatLeishmaniafails to induce
phosporylation of ERK1, ERK2, p38 MAP kinase andc-jun
N
I s,
d yla-
t
d re-
s
d lier
t ivity,
b was
s n
f and
e M
t completely inhibited NO synthesis by LPS (data
hown).

ig. 6. Effect of LPG on nitrite levels in J774A.1 macrophages. J77
acrophages (5× 105 cells/well) were seeded onto 96-well tissue cul
lates. Cells were then treated with different concentrations of LPG (

◦
PS (B) and again incubated at 37C for 24 h. Nitrite levels present in the
upernatants were quantified by Griess reagent. Data are mean± S.D. of
hree separate treatments.

m u-
l and
-terminal kinase in naive macrophages[12]. However, in
FN-gamma primed bone marrow derived macrophageL.
onovanipromastigotes strongly induced the phosphor

ion of ERK1 and ERK2 and p38 kinase[12]. The use ofL.
onovanimutants defective in the biosynthesis of LPG
ulted in induction of MAP kinases in naı̈ve bone marrow
erived macrophages[12]. It has also been reported ear

hat synthetic phosphoglycan (SPG) stimulated ERK act
oth ERK1 and ERK2, in J774 cells and such activation
ustained for at least 30 min[9]. Purified lipophopshoglyca
rom L. majorhas also been reported to activate both p38
xtracellular signal-regulated kinase (ERK) in RAW-ELA
acrophages[3]. Our data show that purified LPG stim

ated all the three classes of MAP kinases, ERK, JNK
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p38, simultaneously, in J774A.1 macrophages. It is possible
that MAP kinases transduce differential regulatory effects
that vary in a receptor- and cell type-dependent manner, per-
haps reflecting cell-lineage-restricted expression of different
classes of MAP kinases[9]. Mitogen-activated protein ki-
nases are known to play a central role in the regulation of
innate response including the production of proinflammatory
cytokines and NO[13,14]. Induction of MAP kinases by LPG
in this study may therefore represent a key step in the elimi-
nation of the parasite.

Our present data show that infection of J774A.1
macrophages withL. donovaniactivated AP-1. The response
was dependent on the concentration ofL. donovani. AP-1
was also activated in cells treated withLeishmaniasurface
molecule lipophosphoglycan. Our results also indicate that in
J774A.1 cells, LPG involved both p38 and ERK1 and ERK2
pathway in AP-1 activation. Quantitative Western blot anal-
ysis of whole cell lysate using c-Fos and c-Jun specific anti-
bodies showed that these proteins that are capable of forming
AP-1 dimers were up regulated in macrophages treated with
LPG (data not shown).

Data presented here further demonstrates that the major
surface molecule ofLeishmaniapromastigotes can induce
NO synthesis by macrophages, thereby playing an important
role in the host–parasite relationship. The leishmanicidal ca-
pacity of these cells showed a significant decrease in the par-
a
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