38 research outputs found
Pyrosequencing versus methylation-specific PCR for assessment of MGMT methylation in tumor and blood samples of glioblastoma patients
Circulating biomarkers in blood may provide an interesting alternative to risky tissue biopsies in the diagnosis and follow-up of glioblastoma patients. We have assessed MGMT methylation status in blood and tissue samples from unresected glioblastoma patients who had been included in the randomized GENOM-009 trial. Paired blood and tissue samples were assessed by methylation-specific PCR (MSP) and pyrosequencing (PYR). After establishing the minimum PYR cut-off that could yield a significant difference in overall survival, we assessed the sensitivity, specificity, positive predictive value and negative predictive value (NPV) of the analyses. Methylation could be detected in cfDNA by both MSP and PYR but with low concordance with results in tissue. Sensitivity was low for both methods (31% and 38%, respectively), while specificity was higher for MSP in blood than for PYR in plasma (96% vs 76%) and NPV was similar (56 vs 57%). Concordance of results in tissue by MSP and PYR was 84.3% (P < 0.001) and correlated with outcome. We conclude that detection of cfDNA in the blood of glioblastoma patients can be an alternative when tumor tissue is not available but methods for the detection of cfDNA in blood must improve before it can replace analysis in tumor tissue
Recommended from our members
Marizomib for patients with newly diagnosed glioblastoma: a randomized phase 3 trial
Background: Standard treatment for patients with newly diagnosed glioblastoma includes surgery, radiotherapy (RT) and temozolomide (TMZ) chemotherapy (TMZ/RT→TMZ). The proteasome has long been considered a promising therapeutic target because of its role as a central biological hub in tumor cells. Marizomib is a novel pan-proteasome inhibitor that crosses the blood brain barrier.
Methods: EORTC 1709/CCTG CE.8 was a multicenter, randomized, controlled, open label phase 3 superiority trial. Key eligibility criteria included newly diagnosed glioblastoma, age > 18 years and Karnofsky performance status > 70. Patients were randomized in a 1:1 ratio. The primary objective was to compare overall survival (OS) in patients receiving marizomib in addition to TMZ/RT→TMZ with patients receiving only standard treatment in the whole population, and in the subgroup of patients with MGMT promoter-unmethylated tumors.
Results: The trial was opened at 82 institutions in Europe, Canada and the US. A total of 749 patients (99.9% of planned 750) were randomized. OS was not different between the standard and the marizomib arm (median 17 vs 16.5 months; HR=1.04; p=0.64). PFS was not statistically different either (median 6.0 vs. 6.3 months; HR=0.97; p=0.67). In patients with MGMT promoter-unmethylated tumors, OS was also not different between standard therapy and marizomib (median 14.5 vs 15.1 months, HR=1.13; p=0.27). More CTCAE grade 3/4 treatment-emergent adverse events were observed in the marizomib arm than in the standard arm.
Conclusions: Adding marizomib to standard temozolomide-based radiochemotherapy resulted in more toxicity, but did not improve OS or PFS in patients with newly diagnosed glioblastoma
Recommended from our members
Association of partial T2-FLAIR mismatch sign and isocitrate dehydrogenase mutation in WHO grade 4 gliomas:results from the ReSPOND consortium
PURPOSE: While the T2-FLAIR mismatch sign is highly specific for isocitrate dehydrogenase (IDH)-mutant, 1p/19q-noncodeleted astrocytomas among lower-grade gliomas, its utility in WHO grade 4 gliomas is not well-studied. We derived the partial T2-FLAIR mismatch sign as an imaging biomarker for IDH mutation in WHO grade 4 gliomas. METHODS: Preoperative MRI scans of adult WHO grade 4 glioma patients (n = 2165) from the multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium were analyzed. Diagnostic performance of the partial T2-FLAIR mismatch sign was evaluated. Subset analyses were performed to assess associations of imaging markers with overall survival (OS). RESULTS: One hundred twenty-one (5.6%) of 2165 grade 4 gliomas were IDH-mutant. Partial T2-FLAIR mismatch was present in 40 (1.8%) cases, 32 of which were IDH-mutant, yielding 26.4% sensitivity, 99.6% specificity, 80.0% positive predictive value, and 95.8% negative predictive value. Multivariate logistic regression demonstrated IDH mutation was significantly associated with partial T2-FLAIR mismatch (odds ratio [OR] 5.715, 95% CI [1.896, 17.221], p = 0.002), younger age (OR 0.911 [0.895, 0.927], p < 0.001), tumor centered in frontal lobe (OR 3.842, [2.361, 6.251], p < 0.001), absence of multicentricity (OR 0.173, [0.049, 0.612], p = 0.007), and presence of cystic (OR 6.596, [3.023, 14.391], p < 0.001) or non-enhancing solid components (OR 6.069, [3.371, 10.928], p < 0.001). Multivariate Cox analysis demonstrated cystic components (p = 0.024) and non-enhancing solid components (p = 0.003) were associated with longer OS, while older age (p < 0.001), frontal lobe center (p = 0.008), multifocality (p < 0.001), and multicentricity (p < 0.001) were associated with shorter OS. CONCLUSION: Partial T2-FLAIR mismatch sign is highly specific for IDH mutation in WHO grade 4 gliomas
EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood
In response to major changes in diagnostic algorithms and the publication of mature results from various large clinical trials, the European Association of Neuro-Oncology (EANO) recognized the need to provide updated guidelines for the diagnosis and management of adult patients with diffuse gliomas. Through these evidence-based guidelines, a task force of EANO provides recommendations for the diagnosis, treatment and follow-up of adult patients with diffuse gliomas. The diagnostic component is based on the 2016 update of the WHO Classification of Tumors of the Central Nervous System and the subsequent recommendations of the Consortium to Inform Molecular and Practical Approaches to CNS Tumour Taxonomy — Not Officially WHO (cIMPACT-NOW). With regard to therapy, we formulated recommendations based on the results from the latest practice-changing clinical trials and also provide guidance for neuropathological and neuroradiological assessment. In these guidelines, we define the role of the major treatment modalities of surgery, radiotherapy and systemic pharmacotherapy, covering current advances and cognizant that unnecessary interventions and expenses should be avoided. This document is intended to be a source of reference for professionals involved in the management of adult patients with diffuse gliomas, for patients and caregivers, and for health-care providers
Glioblastoma: Relationship between Metabolism and Immunosuppressive Microenvironment
Glioblastoma (GBM) is the most aggressive brain tumor in adults and is characterized by an immunosuppressive microenvironment. Different factors shaping this tumor microenvironment (TME) regulate tumor initiation, progression, and treatment response. Genetic alterations and metabolism pathways are two main elements that influence tumor immune cells and TME. In this manuscript, we review how both factors can contribute to an immunosuppressive state and overview the strategies being tested
RNA-Sequencing and immunohistochemistry reveal ZFN7 as a stronger marker of survival than molecular subtypes in G-CIMP-negative glioblastoma
Data de publicaciĂł electrĂłnica: 26-10-2020Purpose: Glioblastoma is the most aggressive brain tumor in adults and has few therapeutic options. The study of molecular subtype classifications may lead to improved prognostic classification and identification of new therapeutic targets. The TCGA subtype classification has mainly been applied in USA clinical trials, while the IGS has mainly been applied in European trials. Experimental design: From paraffin-embedded tumor samples of 432 uniformly treated, newly diagnosed glioblastoma patients, we built tissue microarrays for immunohistochemical analysis and applied RNA-Sequencing to the best samples in order to classify them according to the TCGA and IGS subtypes. Results: We obtained transcriptomic results from 124 patients. There was a lack of agreement among the three TCGA classificatory algorithms employed, which was not solely attributable to intratumoral heterogeneity. There was overlapping of the TCGA mesenchymal subtype with IGS cluster 23 and of the TCGA classical subtype with IGS cluster 18. Molecular subtypes were not associated with prognosis, but levels of expression of 13 novel genes were identified as independent prognostic markers in G-CIMP-negative patients, independently of clinical factors and MGMT methylation. These findings were validated in at least one external database. Three of the 13 genes were selected for immunohistochemical validation. In particular, high ZNF7 RNA expression and low ZNF7 protein expression were strongly associated with longer survival, independently of molecular subtypes. Conclusions: The TCGA and IGS molecular classifications of glioblastoma have no higher prognostic value than individual genes and should be refined before being applied to clinical trials
Glioblastoma TCGA mesenchymal and IGS 23 tumors are identifiable by immunohistochemistry and have an immune-phenotype indicating potential benefit from immunotherapy
Data de publicació electrònica: 30-09-2020Purpose: Molecular subtype classifications in glioblastoma may detect therapy sensitivities. Immunohistochemistry would potentially allow the identification of molecular subtypes in routine clinical practice. Experimental design: Paraffin-embedded tumor samples of 124 uniformly treated, newly diagnosed glioblastoma patients were submitted to RNA-Sequencing, immunohistochemistry, and immune-phenotyping to identify differences in molecular subtypes associated with treatment sensitivities. Results: We detected high molecular and immunohistochemical overlapping of the TCGA mesenchymal subtype with IGS cluster 23 and of the TCGA classical subtype with IGS cluster 18. Immunohistochemical patterns, gene fusion profiles, and immune-phenotypes varied across subtypes. Immunohistochemistry revealed that the TCGA classical subtype was identified by high expression of EGFR and low expression of PTEN, while the mesenchymal subtype was identified by low expression of SOX2 and high expression of two antibodies, SHC1 and TCIRG1, selected based on RNA differential transcriptomic expression. The proneural subtype was identified by frequent positive IDH1 expression and high Olig2 and Ki67 expression. Immune-phenotyping showed that mesenchymal and IGS 23 tumors exhibited a higher positive effector cell score, a higher negative suppressor cell score, and lower levels of immune checkpoint molecules. The cell-type deconvolution analysis revealed that these tumors are highly enriched in M2 macrophages, resting memory CD4+ T cells, and activated dendritic cells, indicating that they may be ideal candidates for immunotherapy, especially with anti-M2 and/or dendritic cell vaccination. Conclusions: There is a subset of tumors, frequently classified as mesenchymal or IGS cluster 23, that may be identified with immunohistochemistry and could well be optimal candidates to immunotherapy