5 research outputs found

    Effects of thermal annealing on localization and strain in core/multishell GaAs/GaNAs/GaAs nanowires

    No full text
    Core/shell nanowire (NW) heterostructures based on III-V semiconductors and related alloys are attractive for optoelectronic and photonic applications owing to the ability to modify their electronic structure via bandgap and strain engineering. Post-growth thermal annealing of such NWs is often involved during device fabrication and can also be used to improve their optical and transport properties. However, effects of such annealing on alloy disorder and strain in core/shell NWs are not fully understood. In this work we investigate these effects in novel core/shell/shell GaAs/GaNAs/GaAs NWs grown by molecular beam epitaxy on (111) Si substrates. By employing polarization-resolved photoluminescence measurements, we show that annealing (i) improves overall alloy uniformity due to suppressed long-range fluctuations in the N composition; (ii) reduces local strain within N clusters acting as quantum dot emitters; and (iii) leads to partial relaxation of the global strain caused by the lattice mismatch between GaNAs and GaAs. Our results, therefore, underline applicability of such treatment for improving optical quality of NWs from highly-mismatched alloys. They also call for caution when using ex-situ annealing in strain-engineered NW heterostructures.Funding Agencies|Swedish Energy AgencySwedish Energy Agency [P40119-1]; Swedish Research CouncilSwedish Research Council [2015-05532]; Swedish Foundation for International Cooperation in Research and Higher Education (STINT) [JA2014-5698]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]; KAKENHI from the Japan Society for the Promotion of ScienceMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [16H05970, 23686004]; Kato Foundation for Promotion of Science; Kurata Memorial Hitachi Science and Technology Foundation; Murata Science Foundation; Linkoping University</p

    Effects of growth temperature and thermal annealing on optical quality of GaNAs nanowires emitting in the near-infrared spectral range

    No full text
    We report on optimization of growth conditions of GaAs/GaNAs/GaAs core/shell/shell nanowire (NW) structures emitting at ~1 μm, aiming to increase their light emitting efficiency. A slight change in growth temperature is found to critically affect optical quality of the active GaNAs shell and is shown to result from suppressed formation of non-radiative recombination (NRR) centers under the optimum growth temperature. By employing the optically detected magnetic resonance spectroscopy, we identify gallium vacancies and gallium interstitials as being among the dominant NRR defects. The radiative efficiency of the NWs can be further improved by post-growth annealing at 680 °C, which removes the gallium interstitials.Funding agencies:  Swedish Energy AgencySwedish Energy Agency [P40119-1]; Swedish Research CouncilSwedish Research Council [2015-05532]; Swedish Foundation for International Cooperation in Research and Higher Education (STINT) [JA2014-5698]; Swedish Government Strategic Res</p

    Increasing N content in GaNAsP nanowires suppresses the impact of polytypism on luminescence

    No full text
    Cathodoluminescence (CL) and micro-photoluminescence spectroscopies are employed to investigate effects of structural defects on carrier recombination in GaNAsP nanowires (NWs) grown by molecular beam epitaxy on Si substrates. In the NWs with a low N content of 0.08%, these defects are found to promote non-radiative (NR) recombination, which causes spatial variation of the CL peak position and its intensity. Unexpectedly, these detrimental effects can be suppressed even by a small increase in the nitrogen composition from 0.08% to 0.12%. This is attributed to more efficient trapping of excited carriers/excitons to the localized states promoted by N-induced localization and also the presence of other NR channels At room temperature, the structural defects no longer dominate in carrier recombination even in the NWs with the lower nitrogen content, likely due to increasing importance of other recombination channels. Our work underlines the need in eliminating important thermally activated NR defects, other than the structural defects, for future optoelectronic applications of these NWs.Funding Agencies|Linkoping University; Swedish Research Council [2016-05091]; Swedish Energy Agency [P40119-1]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]; Swiss National Foundation through the NCCR QSIT</p

    Molecular beam epitaxial growth of dilute nitride GaNAs and GaInNAs nanowires

    No full text
    We report the growth of dilute nitride GaNAs and GaInNAs core-multishell nanowires (NWs) using molecular beam epitaxy assisted by a plasma source. Using the self-catalyst vapor-liquid-solid growth mode, these NWs were grown on Si(111) and silicon on insulator substrates. The GaNAs and GaInNAs shells contain nitrogen up to 3%. Axial cross-sectional scanning transmission electron microscopy measurements and energy-dispersive x-ray spectrometry confirm the formation of the core-multishell NW structure. We obtained high-quality GaNAs NWs with nitrogen compositions up to 2%. On the other hand, GaNAs containing 3% nitrogen, and GaInNAs NWs, show distorted structures; moreover, the optical emissions seem to be related to defects. Further optimisations of the growth conditions will improve these properties, promising future applications in nanoscale optoelectronics.Funding Agencies|KAKENHI by the Japan Society for the Promotion of Science [16H05970]; Swedish Energy Agency [P40119-1]</p

    Realization of the Kohn’s Theorem in Ge/Si Quantum Dots with Hole Gas: Theory and Experiment

    No full text
    This article discusses specific quantum transitions in a few-particle hole gas, localized in a strongly oblate lens-shaped quantum dot. Based on the adiabatic method, the possibility of realizing the generalized Kohn theorem in such a system is shown. The criteria for the implementation of this theorem in a lens-shaped quantum dot, fulfilled in the experiment, is presented. An analytical expression is obtained for the frequencies of resonant absorption of far-infrared radiation by a gas of heavy holes, which depends on the geometric parameters of the quantum dot. The results of experiments on far-infrared absorption in the arrays of p-doped Ge/Si quantum dots grown by molecular beam epitaxy (MBE) with gradually increasing average number of holes in dot are presented. Experimental results show that the Coulomb interaction between the holes does not affect the resonant frequency of the transitions. A good agreement between the theoretical and experimental results is shown
    corecore