3 research outputs found

    A Single-Tube, Functional Marker-Based Multiplex PCR Assay for Simultaneous Detection of Major Bacterial Blight Resistance Genes Xa21, xa13 and xa5 in Rice

    Get PDF
    AbstractIn marker-assisted breeding for bacterial blight (BB) resistance in rice, three major resistance genes, viz., Xa21, xa13 and xa5, are routinely deployed either singly or in combinations. As efficient and functional markers are yet to be developed for xa13 and xa5, we have developed simple PCR-based functional markers for both the genes. For xa13, we designed a functional PCR-based marker, xa13-prom targeting the InDel polymorphism in the promoter of candidate gene Os8N3 located on chromosome 8 of rice. With respect to xa5, a multiplex-PCR based functional marker system, named xa5FM, consisting of two sets of primer pairs targeting the 2-bp functional nucleotide polymorphism in the exon II of the gene TFIIAɤ5 (candidate for xa5), has been developed. Both xa13-prom and xa5FM can differentiate the resistant and susceptible alleles for xa13 and xa5, respectively, in a co-dominant fashion. Using these two functional markers along with the already reported functional PCR-based marker for Xa21 (pTA248), we designed a single-tube multiplex PCR based assay for simultaneous detection of all the three major resistance genes and demonstrated the utility of the multiplex marker system in a segregating population

    Not Available

    No full text
    Not AvailableMTU1010 is a high-yielding mega-variety of rice grown extensively in India. However, it does not perform well in soils with low phosphorus (P) levels. With an objective to improve MTU 1010 for tolerance to low soil P, we have transferred Pup1, a major quantitative trait locus (QTL) associated with tolerance from another mega-variety, Swarna, through marker-assisted back cross breeding (MABB). Foreground selection of the F1 and backcross plants was performed with the codominant, closely linked CAPS marker, K20-2, while two flanking markers RM28011 and RM28157 were utilized for recombinant selection. At each backcross generation, positive plants were also analyzed with a set of 85 parental polymorphic SSR markers to identify theQTL-positive plants possessing maximum introgression of MTU 1010 genome. At BC2F1, the best backcross plant was selfe dtogenerate BC2F2s. Among them, the plants homozygous for Pup1 (n = 22) were reconfirmed using the functional marker for Pup1, viz., K46-1, and they were advanced through pedigree method of selection until BC2F6 generation. A total of five elite BC2F6 lines, possessing Pup1 and phenotypically similar to MTU 1010, were screened in the low soil P plot and normal plot (with optimum soil P levels) during wet season, 2016. All the selected lines showed better performance under low P soil with more number of productive tillers,better root system architecture,and significantly higher yield (>390%) as compared to MTU 1010. Further, under normal soil, the lines were observed to be similar to or better than MTU 1010 for most of the agro-morphological traits and yield. This study represents the successful application of marker assisted selection for improvement of tolerance to low soil P in a high-yielding Indian rice variety.The authors received financial support provided by the Department of Biotechnology (DBT), Government of India, for execution of the research study through the Grant # BT/PR4665/AGII/106/854/2012 dated: 19/02/2013
    corecore