1,841 research outputs found
Quantum Geons and Noncommutative Spacetimes
Physical considerations strongly indicate that spacetime at Planck scales is
noncommutative. A popular model for such a spacetime is the Moyal plane. The
Poincar\`e group algebra acts on it with a Drinfel'd-twisted coproduct. But the
latter is not appropriate for more complicated spacetimes such as those
containing the Friedman-Sorkin (topological) geons. They have rich
diffeomorphism groups and in particular mapping class groups, so that the
statistics groups for N identical geons is strikingly different from the
permutation group . We generalise the Drinfel'd twist to (essentially)
generic groups including to finite and discrete ones and use it to modify the
commutative spacetime algebras of geons as well to noncommutative algebras. The
latter support twisted actions of diffeos of geon spacetimes and associated
twisted statistics. The notion of covariant fields for geons is formulated and
their twisted versions are constructed from their untwisted versions.
Non-associative spacetime algebras arise naturally in our analysis. Physical
consequences, such as the violation of Pauli principle, seem to be the outcomes
of such nonassociativity.
The richness of the statistics groups of identical geons comes from the
nontrivial fundamental groups of their spatial slices. As discussed long ago,
extended objects like rings and D-branes also have similar rich fundamental
groups. This work is recalled and its relevance to the present quantum geon
context is pointed out.Comment: 41 page
Fuzzy Nambu-Goldstone Physics
In spacetime dimensions larger than 2, whenever a global symmetry G is
spontaneously broken to a subgroup H, and G and H are Lie groups, there are
Nambu-Goldstone modes described by fields with values in G/H. In
two-dimensional spacetimes as well, models where fields take values in G/H are
of considerable interest even though in that case there is no spontaneous
breaking of continuous symmetries. We consider such models when the world sheet
is a two-sphere and describe their fuzzy analogues for G=SU(N+1),
H=S(U(N-1)xU(1)) ~ U(N) and G/H=CP^N. More generally our methods give fuzzy
versions of continuum models on S^2 when the target spaces are Grassmannians
and flag manifolds described by (N+1)x(N+1) projectors of rank =< (N+1)/2.
These fuzzy models are finite-dimensional matrix models which nevertheless
retain all the essential continuum topological features like solitonic sectors.
They seem well-suited for numerical work.Comment: Latex, 18 pages; references added, typos correcte
Non-thermal plasma technology for the abatement of NOx and SOx from the exhaust of marine diesel engine
Non-thermal plasma based technology is proposed to the abatement of NOx and SOx of the exhaust gas
from marine diesel engine. Proposed technology uses electron gun and microwave energy to generate the plasma. Fundamentals of non-thermal plasma and chemistry are presented with a set of simulation results of the reduction of NOx and SO2 for a typical two stoke marine diesel exhaust engine which is supported by an experimental results obtained with microwave plasma. A new scheme is also proposed in this paper to generate required plasma for the treatment of NOx and SOx form high exhaust flow rate
Recommended from our members
Modelling of DPF regeneration using microwave energy
FEM based models in COMSOL multiphysics have been used to simulate regeneration of diesel particulate filter following the layout of an existing microwave cavity. The study utilized the physics packages in the software to model the electric field and thermal profiles of the microwave cavity and DPF. This was used to establish dimensions for microwave cavity and DPF. Further it was possible to integrate the heating properties of the Silicon Carbide used in the DPF substrate. The electric field and thermal profiles of the microwave cavity, as well as the DPF were investigated for the established dimensions and simulated results were compared with experiments. In the experiment, we deployed microwave power generated by a 2.45GHz magnetron into the existing microwave cavity to regenerate DPF. The results of the experiments showed the thermal profiles during DPF regeneration to be in agreement with the profiles from the simulated results. The scheme was further used to improve the design of the cavity for better energy utilization and DPF regeneration efficiency. Electric field and thermal profiles of the microwave cavity were established for various dimensions of microwave cavity for a given DPF size and the results were investigated. It was found that cylindrical cavity (diameter of 153mm and length of 533mm) gives the optimal dimensions for the regeneration of a commercial DPF (143mm (diameter) x 183mm (length) viewed in terms of near homogeneous electric field distribution.Authors wish to acknowledge InnovateUK for the financial support provided to the project ‘Marine Exhaust Gase Treatment System (MAGS) {grant reference number 42471-295209)’, in which, the presented work is part of
Mobile robot based electrostatic spray system for controlling pests on cotton plants in Iraq
A mobile robot based electrostatic spray system was developed to combat pest infestation on cotton plants in Iraq. The system consists of a charged spray nozzle, a CCD camera, a mobile robot (vehicle and arm) and Arduino microcontroller. Arduino microcontroller is used to control the spray nozzle and the robot. Matlab is used to process the image from the CCD camera and to generate the appropriate control signals to the robot and the spray nozzle. COMSOL multi-physics FEM software was used to design the induction electrodes to achieve maximum charge transfer onto the fan spray liquid film resulting in achieving the desired charge/mass ratio of the spray. The charged spray nozzle was operated on short duration pulsed spray mode. Image analysis was employed to investigate the spray deposition on improvised insect targets on an artificial plant.The ministry of higher education and scientific research of Iraqi governmen
Reduction of NOx and PM in Marine Diesel Engine Exhaust Gas using Microwave Plasma
Abatement of NOx and particulate matters (PM) of marine diesel exhaust gas using microwave (MW) non-thermal plasma is presented in this paper. NOx mainly consist of NO and less concentration of NO2 in a typical two stoke marine diesel engine and microwave plasma generation can completely remove NO. MW was generated using two 2kW microwave sources and a saw tooth passive electrode. Passive electrode was used to generate high electric field region within microwave environment where high energetic electrons (1-3eV) are produced for the generation of non-thermal plasma (NTP). 2kW gen-set diesel exhaust gas was used to test our pilot-scale MW plasma reactor. The experimental results show that almost 100% removal of NO is possible for the exhaust gas flow rate of 60l/s. It was also shown that MW can significantly remove soot particles (PM, 10nm to 365nm) entrained in the exhaust gas of 200kW marine diesel engine with 40% engine load and gas flow rate of 130l/s. MW without generating plasma showed reduction up to 50% reduction of PM and with the plasma up to 90% reduction. The major challenge in these experiments was that igniting the desired plasma and sustaining it with passive electrodes for longer period (10s of minutes) as it required fine tuning of electrode position, which was influenced by many factors such as gas flow rate, geometry of reactor and MW power
On Time-Space Noncommutativity for Transition Processes and Noncommutative Symmetries
We explore the consequences of time-space noncommutativity in the quantum
mechanics of atoms and molecules, focusing on the Moyal plane with just
time-space noncommutativity (,
\theta_{0i}\neqq 0, ). Space rotations and parity are not
automorphisms of this algebra and are not symmetries of quantum physics. Still,
when there are spectral degeneracies of a time-independent Hamiltonian on a
commutative space-time which are due to symmetries, they persist when
\theta_{0i}\neqq 0; they do not depend at all on . They give no
clue about rotation and parity violation when \theta_{0i}\neqq 0. The
persistence of degeneracies for \theta_{0i}\neqq 0 can be understood in terms
of invariance under deformed noncommutative ``rotations'' and ``parity''. They
are not spatial rotations and reflection. We explain such deformed symmetries.
We emphasize the significance of time-dependent perturbations (for example, due
to time-dependent electromagnetic fields) to observe noncommutativity. The
formalism for treating transition processes is illustrated by the example of
nonrelativistic hydrogen atom interacting with quantized electromagnetic field.
In the tree approximation, the transition for hydrogen is
zero in the commutative case. As an example, we show that it is zero in the
same approximation for . The importance of the deformed
rotational symmetry is commented upon further using the decay
as an example.Comment: 13 pages, revised version, references adde
Novel Studies on the \eta' Effective Lagrangian
The effective Lagrangian for \eta' incorporating the effect of the QCD
\theta-angle has been developed previously. We revisit this Lagrangian and
carry out its canonical quantization with particular attention to the test
function spaces of constraints and the topology of the \eta'-field. In this
way, we discover a new chirally symmetric coupling of this field to chiral
multiplets which involves in particular fermions. This coupling violates P and
T symmetries. In a subsequent paper, we will evaluate its contribution to the
electric dipole moment (EDM) of fermions. Our motivation is to test whether the
use of mixed states restores P and T invariance, so that EDM vanishes. This
calculation will be shown to have striking new physical consequences.Comment: 14 pages, 1 figure; V2: NEW TITLE; revised version to be published in
JHEP; references adde
Acoustic and gravity waves in the neutral atmosphere and the ionosphere, generated by severe storms
Gravity waves in the neutral atmosphere and their propagation in the ionosphere and the study of infrasonic signals from thunder were investigated. Doppler shifts of the order of 0.1 Hz are determined and they provide high-resolution measurements of the movements in the ionosphere. By using an array of transmitters with different frequencies and at different locations, the horizontal and vertical propagation vectors of disturbances propagating through the ionosphere are determined
Evaluation of a Behind-the-Ear ECG Device for Smartphone based Integrated Multiple Smart Sensor System in Health Applications
In this paper, we present a wireless Multiple Smart Sensor System (MSSS) in conjunction with a smartphone to enable an unobtrusive monitoring of electrocardiogram (ear-lead ECG) integrated with multiple sensor system which includes core body temperature and blood oxygen saturation (SpO2) for ambulatory patients. The proposed behind-the-ear device makes the system desirable to measure ECG data: technically less complex, physically attached to non-hair regions, hence more suitable for long term use, and user friendly as no need to undress the top garment. The proposed smart sensor device is similar to the hearing aid device and is wirelessly connected to a smartphone for physiological data transmission and displaying. This device not only gives access to the core temperature and ECG from the ear, but also the device can be controlled (removed and reapplied) by the patient at any time, thus increasing the usability of personal healthcare applications. A number of combination ECG electrodes, which are based on the area of the electrode and dry/non-dry nature of the surface of the electrodes are tested at various locations near behind the ear. The best ECG electrode is then chosen based on the Signal-to-Noise Ratio (SNR) of the measured ECG signals. These electrodes showed acceptable SNR ratio of ~20 db, which is comparable with existing tradition ECG electrodes. The developed ECG electrode systems is then integrated with commercially available PPG sensor (Amperor pulse oximeter) and core body temperature sensor (MLX90614) using a specialized micro controller (Arduino UNO) and the results monitored using a newly developed smartphone (android) application
- …