8 research outputs found

    Dendronylation: Residue-specific chemoselective attachment of oligoglycerol dendrimers on proteins with noncanonical amino acids

    Get PDF
    Polyglycerol dendrimers as an important class of polymeric materials especially attractive for covalent attachment to therapeutic proteins as a useful alternative to traditional PEGylation procedures. Herein, we combine in vivo noncanonical amino acid (ncAA) incorporation and chemoselective conjugation in vitro to produce novel hybrid protein–dendrimer conjugates with the defined architectures. We incorporated Azidohomoalanine (Aha) as methionine substitute in vivo into various protein scaffolds to allow non-invasive dendrimer conjugations (dendronylation). Our approach makes recombinant proteins accessible for the design of multivalent dendrimer conjugates since it enables the preparation of many sequences with various positions for regioselective dendronylation

    Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles

    Get PDF
    Engineering nanostructures of defined size and morphology is a great challenge in the field of self-assembly. Herein we report on the formation of supramolecular nanostructures of defined morphologies with subtle structural changes for a new series of dendritic amphiphiles. Subsequently, we studied their application as nanocarriers for guest molecules

    Supramolecular Double Helices from Small C-3-Symmetrical Molecules Aggregated in Water

    Get PDF
    Supramolecular fibers in water, micrometers long and several nanometers in width, are among the most studied nanostructures for biomedical applications. These supramolecular polymers are formed through a spontaneous self-assembly process of small amphiphilic molecules by specific secondary interactions. Although many compounds do not possess a stereocenter, recent studies suggest the (co)existence of helical structures, albeit in racemic form. Here, we disclose a series of supramolecular (co)polymers based on water-soluble benzene-1,3,5-tricarboxamides (BTAs) that form double helices, fibers that were long thought to be chains of single molecules stacked in one dimension (1D). Detailed cryogenic transmission electron microscopy (cryo-TEM) studies and subsequent three-dimensional-volume reconstructions unveiled helical repeats, ranging from 15 to 30 nm. Most remarkable, the pitch can be tuned through the composition of the copolymers, where two different monomers with the same core but different peripheries are mixed in various ratios. Like in lipid bilayers, the hydrophobic shielding in the aggregates of these disc-shaped molecules is proposed to be best obtained by dimer formation, promoting supramolecular double helices. It is anticipated that many of the supramolecular polymers in water will have a thermodynamic stable structure, such as a double helix, although small structural changes can yield single stacks as well. Hence, it is essential to perform detailed analyses prior to sketching a molecular picture of these 1D fibers

    Carbon-based cores with polyglycerol shells – the importance of core flexibility for encapsulation of hydrophobic guests

    No full text
    Two core–shell nanoparticles with polyglycerol shells and sp3 carbon cores with different flexibilities (soft dendritic polyethylene and hard nanodiamond) were synthesized, their encapsulation capacities were compared, and their ability to transport into tumor cells was investigated. The nanocarrier with a soft core was superior to the hard one

    Supramolecular Double Helices from Small C3-symmetrical Molecules Aggregated in Water

    No full text
    Supramolecular fibers in water, micrometers long and several nanometers in width, are amongst the most studied nanostructures for biomedical applications. These supramolecular polymers are formed through a spontaneous self-assembly process of small amphiphilic molecules by specific secondary interactions. Although many compounds do not possess a stereocenter, recent studies suggest the (co-)existence of helical structures, albeit in racemic form. Here, we disclose a series of supramolecular (co)polymers based on water-soluble benzene-1,3,5-tricarboxamides (BTAs) that form double helices, fibers that for long were thought to be chains of single molecules stacked in one dimension (1D). Detailed cryo-TEM studies and subsequent 3D-volume reconstructions unveiled helical repeats, ranging from 15-30 nanometer. Most remarkable, the pitch can be tuned through the composition of the copolymers, where two different monomers with the same core but different peripheries are mixed in various ratios. Like in lipid bilayers, the hydrophobic shielding in the aggregates of these disc-shaped molecules is proposed to be best obtained by dimer-formation promoting supramolecular double helices. It is anticipated that many of the supramolecular polymers in water will have a thermodynamic stable structure being such a double helix, although small structural changes can yield single stacks as well. Hence, it is essential to perform detailed analyses prior to sketching a molecular picture of these 1D fibers

    Supramolecular Double Helices from Small C3Symmetrical Molecules Aggregated in Water

    No full text
    Supramolecular fibers in water, micrometers long and several nanometers in width, are amongst the most studied nanostructures for biomedical applications. These supramolecular polymers are formed through a spontaneous self-assembly process of small amphiphilic molecules by specific secondary interactions. Although many compounds do not possess a stereocenter, recent studies suggest the (co-)existence of helical structures, albeit in racemic form. Here, we disclose a series of supramolecular (co)polymers based on water-soluble benzene-1,3,5-tricarboxamides (BTAs) that form double helices, fibers that for long were thought to be chains of single molecules stacked in one dimension (1D). Detailed cryo-TEM studies and subsequent 3D-volume reconstructions unveiled helical repeats, ranging from 15-30 nanometer. Most remarkable, the pitch can be tuned through the composition of the copolymers, where two different monomers with the same core but different peripheries are mixed in various ratios. Like in lipid bilayers, the hydrophobic shielding in the aggregates of these disc-shaped molecules is proposed to be best obtained by dimer-formation promoting supramolecular double helices. It is anticipated that many of the supramolecular polymers in water will have a thermodynamic stable structure being such a double helix, although small structural changes can yield single stacks as well. Hence, it is essential to perform detailed analyses prior to sketching a molecular picture of these 1D fibers
    corecore