75 research outputs found

    Electing the Pope

    Get PDF

    Monotonicity and Competitive Equilibrium in Cake-cutting

    Full text link
    We study the monotonicity properties of solutions in the classic problem of fair cake-cutting --- dividing a heterogeneous resource among agents with different preferences. Resource- and population-monotonicity relate to scenarios where the cake, or the number of participants who divide the cake, changes. It is required that the utility of all participants change in the same direction: either all of them are better-off (if there is more to share or fewer to share among) or all are worse-off (if there is less to share or more to share among). We formally introduce these concepts to the cake-cutting problem and examine whether they are satisfied by various common division rules. We prove that the Nash-optimal rule, which maximizes the product of utilities, is resource-monotonic and population-monotonic, in addition to being Pareto-optimal, envy-free and satisfying a strong competitive-equilibrium condition. Moreover, we prove that it is the only rule among a natural family of welfare-maximizing rules that is both proportional and resource-monotonic.Comment: Revised versio

    On how to identify experts in a community

    Get PDF

    Fair apportionment in the view of the Venice Commission's recommendation

    Get PDF

    Universal characterization sets for the nucleolus in balanced games

    Get PDF
    We provide a new mo dus op erandi for the computation of the nucleolus in co op- erative games with transferable utility. Using the concept of dual game we extend the theory of characterization sets. Dually essential and dually saturated coalitions determine b oth the core and the nucleolus in monotonic games whenever the core is non-empty. We show how these two sets are related with the existing charac- terization sets. In particular we prove that if the grand coalition is vital then the intersection of essential and dually essential coalitions forms a characterization set itself. We conclude with a sample computation of the nucleolus of bankruptcy games - the shortest of its kind

    Resource-monotonicity and population-monotonicity in cake-cutting

    Get PDF

    Electing the Pope

    Get PDF

    Apportionment and districting by Sum of Ranking Differences

    Get PDF
    Sum of Ranking Differences is an innovative statistical method that ranks competing solutions based on a reference point. The latter might arise naturally, or can be aggregated from the data. We provide two case studies to feature both possibilities. Apportionment and districting are two critical issues that emerge in relation to democratic elections. Theoreticians invented clever heuristics to measure malapportionment and the compactness of the shape of the constituencies, yet, there is no unique best method in either cases. Using data from Norway and the US we rank the standard methods both for the apportionment and for the districting problem. In case of apportionment, we find that all the classical methods perform reasonably well, with subtle but significant differences. By a small margin the Leximin method emerges as a winner, but—somewhat unexpectedly—the non-regular Imperiali method ties for first place. In districting, the Lee-Sallee index and a novel parametric method the so-called Moment Invariant performs the best, although the latter is sensitive to the function’s chosen parameter
    corecore