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Abstract

Sum of Ranking Differences is an innovative statistical method that ranks competing solu-

tions based on a reference point. The latter might arise naturally, or can be aggregated from

the data. We provide two case studies to feature both possibilities. Apportionment and dis-

tricting are two critical issues that emerge in relation to democratic elections. Theoreticians

invented clever heuristics to measure malapportionment and the compactness of the shape

of the constituencies, yet, there is no unique best method in either cases. Using data from

Norway and the US we rank the standard methods both for the apportionment and for the

districting problem. In case of apportionment, we find that all the classical methods perform

reasonably well, with subtle but significant differences. By a small margin the Leximin

method emerges as a winner, but—somewhat unexpectedly—the non-regular Imperiali

method ties for first place. In districting, the Lee-Sallee index and a novel parametric method

the so-called Moment Invariant performs the best, although the latter is sensitive to the func-

tion’s chosen parameter.

Introduction

Comparing apples and oranges is never easy. But what if we are forced to do so? Fair division

methods are hard to compare as each one was designed with a different goal in mind. One way

to deal with the problem is axiomatic analysis. Finding out which method satisfies which fair-

ness properties and make a choice based on this analysis. Policy makers, however, might need

to evaluate the efficiency of their measures or need to justify their decisions by providing some

numerical evidence. Thus, another stream of literature focuses on quantifying different aspects

of the methods and comparing them numerically—Sum of Ranking Differences (SRD) follows

this path.

The aim of this paper is twofold. Firstly, to promote SRD, a novel statistical method which

is rapidly gaining popularity in various fields of applied science, such as analytical chemistry

[1, 2], pharmacology [3], decision making [4], and finance (see case study No. 2 in [5]) and

which can be also potentially interesting to the Political Science and Social Choice community.

Secondly, to use this method to analyse two notoriously divisive issues related to proportional
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representation. These two issues represent two typical problem sets in social choice literature:

fair division and fair assessment problems.

SRD allows us to select the most adequate solution among outcomes with different features

based on a reference point. This situation is very common in multiobjective optimization,

where the decision maker has to choose between many possible Pareto-optimal outcomes [4].

The problem analogous to fair division, where solutions satisfy different sets of fairness crite-

ria. Since these criteria are usually conflicting, meaning there is no universally best solution,

the decision maker has to choose one among them.

There are a number of problem instances where this kind of analysis can be valuable. Possi-

ble applications include, among others, the comparison of resource allocation schemes (e.g.
cooperative game theoretical solutions, cake cutting rules) and the ranking of different mea-

sures (e.g. voting power indices, centrality measures). Thus, SRD can be applied to a wide vari-

ety of problems. Here we demonstrate its usefulness by ranking the solutions of two frequently

studied problems in Political Science: apportionment and districting. The first can be charac-

terized as a fair division problem while the second belongs to fair assessment. Ricca et al. [6]

provides a very nice introduction to both topics.

The idea of proportional representation is prevalent in parliamentary democracies. Elec-

tions are considered fair if each voter has approximately the same amount of influence on the

outcome. In most democratic countries, some members of the House are elected directly in

single member constituencies. These constituencies are created by dividing up larger adminis-

trative regions, e.g. counties or states. To ensure equal representation, the seats of the House

have to be distributed among these administrative units in proportion to their population. To

be more precise, some countries consider total population, while others the number of voters.

In some cases these base numbers are further adjusted (e.g. with the area of the county) to

compensate for other factors. Most notably, rural areas are often treated better, in order to

avoid a situation where the Members of the Parliament represent only a geographically small

part of the country. In any case, the sizes of the constituencies have to be more or less the

same. What makes this task difficult is that allocating a fixed number of seats among counties

of different sizes often leads to divisibility issues. As fractional seats cannot be allotted, we have

to decide which county gets more and which one gets less seats than its fair share.

Legislative bodies, both in the US and in Europe advocate that proportionality should be

the key factor in apportionment. In the US, the 14th amendment already established propor-

tionality as a fundamental principle [7]. In Europe the Venice Commission, the advisory body

of the Council of Europe in the field of constitutional law also attested that equality of voting

power should be achieved by creating constituencies of equal size (Venice Commission [8],

Section 2.2, §13-15).

Even-sized constituencies are a necessary but not sufficient condition for proportional

representation. Elections are often manipulated by gerrymandering—the redesign of constitu-

ency boundaries with the intention to favour one of the parties. Ansolabehere and Palmer [9]

find that 20% of the congressional districts of the US remarkably lack compactness, while The

American Prospect reports that “Close to a hundred congressional seats and thousands of state

legislative seats have been strategically drawn to be noncompetitive at the expense of all other

interests” [10]. As a result some constituencies obtain an unnatural, grotesque shape. Constitu-

ency boundaries may be affected by the geography of the region, by administrative or historic

boundary lines, or because of the concentration of a specific national minority, but often the

sole reason of districting is to manipulate the outcome of the election. Hence, there is a fine

line between districting for valid reasons and gerrymandering.

To combat this weakness, US states impose a number of standards for redistricting. In addi-

tion to contiguity requirements, many states have a compactness clause in their election law,
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some even prescribe basic compactness tests. For a complete list, see [11]. Still, most statutes

are so vague, that it makes it very difficult to challenge the design of constituencies at court

based on compactness issues alone. For example, Idaho [12] requires “To the maximum extent

possible, the plan should avoid drawing districts that are oddly shaped.”. Although many algo-

rithms have been proposed to mathematically define and measure compactness, it is not yet

clear which approach is the most relevant one.

The structure of the paper is the following. In Section 2, we describe the methodology, we

introduce the SRD method and give a detailed example. In Section 3, we analyse the appor-

tionment and districting problem through case studies. Finally, we conclude by pointing out

interesting future research directions.

SRD

Sum of ranking differences is a simple but effective statistical tool to rank and numerically

assess different solutions based on a reference [13, 14].

The input of an SRD analysis is an n × m matrix, where the first m − 1 columns represent

the different models (measurement techniques, Pareto-optimal outcomes), while the rows rep-

resent the measured variables (properties). In the following we will refer to the columns as

solutions, and the rows as objects. The last column of the matrix has a special role. It contains

the benchmark values, called references, which form the basis of comparison. From the input

matrix we compose a ranking matrix by replacing each value in a column—in order of magni-

tude—by its rank. Then SRD values are obtained by computing the absolute differences

between the column ranks and the reference ranking and summing them up.

Reference values

SRD requires a reference value for each object. In some cases, justified reference values are

available (prescriptions, earlier measurements). In the absence of a known gold standard, these

reference values have to be extracted from the data. This step is called the data fusion [15].

Depending on the type of data, this can be done by a number of ways. Here we list the most

common methods.

• Average (arithmetic mean). Not only the random errors but the systematic ones (biases) of

different methods, and/or different measurement techniques follow normal distribution. If

average is used in the data fusion act, the errors cancel each other out supported by the maxi-

mum likelihood principle and empirical evidences [16].

• Minimum/maximum. Error rates, residuals, misclassification rates, etc. often can be grasped

with the minimum values. Row maximum is a suitable gold standard for the best classifica-

tion rates, correlation coefficients etc. Row maxima and minima should be chosen whenever

objects are maximized or minimized under optimal conditions. Such a selection of a bench-

mark is equivalent to defining the hypothetically “best” method with the smallest error, best

classification, etc.

• Median. A “self-evident” substitute for the mean for asymmetric distributions, in the pres-

ence of outliers.

SRD step by step

SRD is not solely a distance metric, but a composite procedure including data fusion and vali-

dation steps. Here we describe how it works in details. In addition, SRD is summarized on an
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animation procedure as a supplementary file in Bajusz et al. [17]. An SRD toolbox in MS Excel

macro format is available at: http://aki.ttk.mta.hu/srd.

1. Data fusion: The definition of a reference (benchmark) depends on the features of the data

set. The background philosophy is similar to proficiency testing (interlaboratory compari-

sons), where laboratories and techniques are compared using Z-scores with the assumption

of normality [16]. Reference is either a known gold standard, or computed row-wise as the

function of the first m − 1 column values.

2. Converting the data matrix: We create a ranking matrix by replacing each value in the col-

umn by its rank. That is, for each column (including the reference) take the smallest value

in the column and replace it with ‘1’, take the second smallest value and replace it with ‘2’,

and so on. Finally, the last remaining value, which was the largest of the original column

values, is replaced by ‘n’. Ties in column vectors are resolved by giving the same rank to

cells with the same value: the arithmetic mean of the ranks. This tiebreaking mechanism is

called fractional ranking and is the standard in all statistical tests that deal with rankings.

3. Computing the SRD values: We calculate the (absolute) ranking differences between the

reference and solution vector coordinates and sum them up. The SRD values are, in fact,

city block (Manhattan) distances, and they rank the solutions. The smaller the SRD value

the closer the solution is to the benchmark, i.e. the better. The mutual proximity of SRD val-

ues indicates the specific grouping of variables.

4. Validation: To remain comparable within various data sets (and different number of rows)

the normalized SRD values (scaled between 0 and 100) are calculated. The permutation test

(also called randomization test, denoted by CRRN = comparison of ranks with random

numbers) shows whether the rankings are comparable with a ranking taken at random or

they are different from it significantly. The second validation option is called cross-valida-

tion, and assigns uncertainties to the SRD values. Leave-one-out cross-validation is applied

if the number of rows is less than 14. Leave-many-out cross-validation is applied for larger

number of rows in the input matrix.

Validation

SRD values follow a discrete distribution that depends on the number of rows. If n exceeds 13

the distribution can be approximated with the normal distribution well. The difference is

already negligible for n> 10, but for values n� 13 the SRD distribution is provided in the

SRD toolbox. By convention we accept those solutions that are below 0.05, that is, below the

5% significance threshold. Between 5-95% solutions are not distinguishable from random

ranking, while above 95% the solutions seem to rank the objects in a reverse order (with 5%

significance).

The second validation step is cross-validation, where we repeatedly compute the SRD val-

ues, while one seventh of the objects is left out. This can be done in blocks or by selecting ran-

dom rows. If the number of objects is small only one row is left out in each step. The median

of the normalized SRD values are computed for each solution. The medians are then compared

with Wilcoxon matched pair signed rank test (henceforward Wilcoxon test) to obtain a group-

ing of the solutions. The Wilcoxon test is a non-parametric statistical hypothesis test that can

be used to compare two related samples. It is a common alternative to the paired Student’s t-

test (also known as “t-test for dependent samples”) when the sample size is small and the popu-

lation cannot be assumed to be normally distributed.
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Cross-validation is similar to a Monte Carlo simulation where we randomly generate data

and test the different methods. Generating random data might be difficult as the underlying dis-

tribution is often unknown, thus new, smaller datasets are produced by sampling the rows. Note,

that we did not make any assumption on the independence of the objects. Indeed, SRD works

fine even when there is some dependency between the objects. Cross-validation, however, might

contain some noise if the solutions are not consistent. A solution is inconsistent if upon receiving

a sub-set of the objects as input, assigns different values for those objects, than what the solution

prescribed for the same sub-set for the original problem. This noise can be eliminated by com-

puting the solutions for the smaller problems during each step of the cross-validation.

Example

Now we demonstrate how SRD values are computed. Table 1 compares a couple of mobile

phones based on the technological benchmark values of six features (Battery, Performance,

Storage, etc.). In order to compare the features, the benchmark values are normalized. Note that

this example is illustrative—in the case studies, the objects we analyse are of the same kind. Ref-

erence indicates the desired parameters. Phone A has a little more battery life and better camera

than Phone B, but inferior in other aspects. First, we compute the ranks for both of the phones

and the reference values. The smallest number in the column of Phone A is the RAM, so it will

be the first in the ranking. The second smallest number in the column is the CPU performance,

which therefore is ranked second, and so on. Notice that in case of Phone A, display and storage

tie for the 3rd and 4th place, thus they each get an average rank of 3.5. Similarly, in case of

Phone B, storage and RAM ties for 4th and 5th place, so they get an average rank of 4.5.

After we computed the column ranks, we compare them with the reference ranking. SRD

values are obtained by first taking the absolute difference of a column ranking with the refer-

ence ranking objectwise, then summing up the differences. In the example, Phone B is some-

what closer to the expectation, than Phone A.

Table 2 demonstrates the steps of the Wilcoxon test. Each row represent an SRD computa-

tion for a sub-set of the objects. As n is small, leave-one-out cross-validation is applied. That is,

the Gr1 row was obtained by leaving out the first row, Gr2 by leaving out the second, and so

on. The Diffs. column shows the differences of SRD scores, while the next column their abso-

lute value. The latter is then used to create a ranking, tiebreaking is again resolved by fractional

ranking. Finally, we reapply the signs, that is, ranks that originated from a negative difference

are multiplied by (−1).

The last column is used to calculate the test statistics, W which is the minimum of two val-

ues: the sum of positive ranks (W+) and the sum of negative ranks (W−). W follows a specific

distribution with an expected value of zero and which for large n converges to normal distribu-

tion. In the example, W = min{6 + 4.5 + 2, 2 + 2 + 4.5} = 8.5 under which we reject the null-

hypothesis and conclude that Phone B is closer to the reference.

Table 1. Calculation of the SRD values.

Features Phone A Rank Diff. Phone B Rank Diff. Reference Rank

Battery 0.814 5 0 0.793 3 2 0.750 5

Performance 0.661 2 1 0.700 1 0 0.594 1

Storage 0.681 3.5 0.5 0.844 4.5 0.5 0.719 4

Camera 1.000 6 0 0.975 6 0 1.000 6

RAM 0.587 1 2 0.844 4.5 1.5 0.703 3

Display 0.681 3.5 1.5 0.709 2 0 0.625 2

SRD values 5 4

https://doi.org/10.1371/journal.pone.0229209.t001
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The results are visualized in Fig 1. The boxplots represent the the first two column of

Table 2, that is, how the SRD scores ranged in the cross-validation. For comparability reasons,

SRD scores are normalized with the maximum possible difference, which is 12 for 5 objects.

The whiskers indicate the minimum and maximum values, in case of Phone A these are

0:833 ¼ 1=12 and 0:4166 ¼ 5=12. The boxes indicate the range between the first and third

quartile. Note that, since in this example we had only 6 data entries for each solution, the 2nd

Table 2. Cross-validation—The computation of the Wilcoxon test.

Samples SRDA SRDB Diff. Abs. Unsigned ranks Signed ranks.

Gr1 5 1 4 4 6 6

Gr2 3 4 -1 1 2 -2

Gr3 4 2 2 2 4.5 4.5

Gr4 5 4 1 1 2 2

Gr5 1 2 -1 1 2 -2

Gr6 2 4 -2 2 4.5 -4.5

https://doi.org/10.1371/journal.pone.0229209.t002

Fig 1. Cross validation—‘<’ indicates that the solutions significantly differ (at the 5% level) according to the

Wilcoxon test.

https://doi.org/10.1371/journal.pone.0229209.g001
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and the 5th largest values were chosen as the first and the third quartile. The Wilcoxon test

tells us whether the difference between the boxplots is significant.

Case studies

In this section we demonstrate how SRD can be helpful in fair division and fair assessment sit-

uations. To be conform with the terminology of the apportionment literature, in the mathe-

matical description we will use ‘state’ instead of ‘county’.

The apportionment problem

In the apportionment problem we have a finite number of seats, which have to be distributed

among states with different populations. The problem is analogous to the distribution of seats

between parties, which received different number of votes during the elections. Brill et al. [18]

also showed that many apportionment methods can be formulated as multiwinner approval

rules. The US was the first modern country that adopted sophisticated apportionment tech-

niques. Balinski and Young [7] give a comprehensive historical overview of the theoretical and

political debate that surrounded the introduction and evolution of apportionment methods in

the US. Here we restrict ourselves to discussing the main challenges and the proposed solu-

tions that emerged in the past two centuries. First, we introduce some notation.

Mathematical framework. Let m denote the number of states in the country. An appor-
tionment problem is a pair (p, H) that consists of a vector p = (p1, p2, . . ., pm) of state popula-

tions, pi 2 INþ and a positive integer H 2 INþ denoting the number of seats in the House. An

apportionment method determines the non-negative integers a1, a2, . . ., am with
Pm

i¼1
ai ¼ H,

specifying how many seats each of the states 1, 2, . . ., m obtains. Formally, it is a function M
that assigns an allotment for each apportionment problem (p, H). Note that apportionment

methods usually do not include any tiebreaking mechanism. A general assumption in the liter-

ature is that all the pi values are different, which is virtually always true for real instances. Fur-

thermore, let P ¼
Pm

i¼1
pi denote the total population of the country, and let A ¼ P

H be the

average size of a constituency. We refer to the fraction
pi
P H ¼

pi
A as the respective share of state i.

Properties of apportionment methods. Apportionment rules can be classified into three

categories: largest remainder methods, divisor methods and optimization methods. Each of

the three approaches possess some unique trait that the others do not.

One of the most basic properties of apportionment is the so-called Hare-quota: if exact pro-

portional allocation of the seats is not possible due to divisibility issues, it is reasonable to find

an allotment nearest to the respective shares of the states. Formally, each state should be allot-

ted at least as many seats as the lower integer part of its respective share (lower quota). Con-

versely, no state should obtain more seats than the upper integer part of its respective share

(upper quota). When an apportionment method satisfies both upper- and lower-quota, we say

it has the Hare-quota property.

Largest remainder methods were designed to exhibit this property. The best known such

method is the Hamilton-method (sometimes also called Vinton-method), which first assigns

each state its lower quota, then the remaining seats are distributed one-by-one to the states

with the largest fractional parts of their respective shares. The Droop method is calculated in a

similar way, but the states’ respective share is obtained by dividing the state populations with

1þ P
1þH

� �
. This results in different lower quota, and different fractional parts.

Hamilton-method, as all largest remainder methods, is vulnerable to monotonicity issues,

which was the main reason why it was abandoned by US legislators. The most famous monoto-

nicity paradox is the Alabama-paradox. Statisticians observed, that increasing the House size
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sometimes result in less seats for some states. Another paradoxical phenomenon is when a

dynamically growing state is losing seats against a state with smaller population growth [19].

Hamilton-method is neither House- nor population-monotone. In addition, it also suffers

from the New State and Elimination paradoxes (see Balinski and Young [20] and Jones et al.
[21] for further details).

Divisor methods are immune to monotonicity paradoxes. A divisor method is character-

ized by a monotone increasing function f : IN! IR, the so-called divisor criterion. The
pi
f ðsÞ

value is the rank-index or claim of state i when it has s seats. Seats are allocated to the states

one-by-one to the state with the highest claim until all the seats are distributed. It is a general

assumption that during the allotment no ties occur, that is all the
pi
f ðsÞ values are distinct. In this

paper we analyzed the following divisor methods (EP stands for Equal Proportions method—

aliases are due to reinventions):

Adams method f ðsÞ ¼ s

Huntington-Hill=EP method f ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 1Þ

p

Sainte-Lagu€e=Webster method f ðsÞ ¼ sþ 1=2

Jefferson=D’Hondt method f ðsÞ ¼ sþ 1

Imperiali method f ðsÞ ¼ sþ 2

Macau method f ðsÞ ¼ 2s

We say that a divisor method is regular if the divisor criterion is bounded between s and

s + 1, that is s� f(s)� s + 1. Regular divisor methods have a particular feature: Notice that the

listed divisor criteria are pointwise increasing—the methods favour large states over small states

in the same order. That is, the Adams method favours small states, while the Jefferson/D’Hondt

is the most beneficial for large states (see also refs. [20, 22, 23]). Also regular divisor methods

may violate either the lower- or the upper-quota, but never both. Non-regular methods like the

Imperiali- and Macau methods, may violate the upper- and lower-quota at the same time.

Optimization methods compose the third branch of apportionment methods. The Burt-

Harris method [24, 25] minimizes the maximum disparity in representation between any two

states, while the Leximin method [26], lexicographically minimizes the maximum departure,

that is, the difference between the population of any constituency and the average constituency

size.

The Venice Commission, the advisory body of the Council of Europe in the field of consti-

tutional law, published The Code of Good Practice in Electoral Matters in 2002 [8], which was

consequently used in reviewing Albania’s and Estonia’s electoral law in 2011 [27, 28]. Instead

of monotonicity properties this guidebook focuses on the equality of voting power. Optimiza-

tion methods are the only methods that are conform with the recommendation of the Venice

Commission.

There is a slight difference between the recommendation and the Hare-quota requirement.

The Hare-quota specifies how many seats a state should receive at least and at most. If a state

gets less than its lower quota, then the allotment can be considered somewhat unfair from the

point of view of that particular state. The recommendation of the Venice Commission is con-

cerned rather with the individual voter. If the population sizes of the constituencies differ too

much so does the voters’ influence. In Europe, where the countries consist of small and in

some sense uniform counties the latter makes more sense. Interestingly, the US Supreme

Court also ruled that no deviation from equality is too small to challenge as long as a plan

with less inequality can be presented (see the case Kirkpatrick v. Preisler (1969)). But this only
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applies within state. Across states there seems to be no restrictions—this is why currently the

voters of Rhode Island have 88% more influence than the voters of Montana [26]. Table 3 sum-

marizes the correspondence between apportionment methods and properties.

Case study of Norway. The choice of apportionment method often depend on cultural

and historical characteristics of the country. Even if the decision maker has a clear preference

over the three properties (cf. Table 3), each class contains several methods to choose from.

Which one performs best on the given data is still up to debate. Since apportionment is also

used to distribute seats between parties after the elections, the apportionment method is often

challenged in countries with a fragmented parliament. To evaluate the different candidates,

malapportionment measures have been proposed [29–33]. SRD follows this literature and

offers yet another way to help this difficult choice.

In apportionment, there is a natural candidate for reference point: the respective shares of

the states (note that these are non-integer numbers). To demonstrate the effectiveness of SRD

we use population data from Norway. In Norway, apportionment is based on the number of

voters adjusted by the size of the county. Here we use the raw population data [34] as after

adjustment most of the solutions coincide, hence there is no point in comparison. Table 4

Table 3. Properties of apportionment methods. ✓ indicates that the solution satisfies, while ✗ indicates that it violates the given property.

Methods Hare-quota Monotonicity properties VC’s recommendation

Largest remainder methods ✓ ✗ ✗

Divisor methods ✗ ✓ ✗

Optimization methods ✗ ✗ ✓

https://doi.org/10.1371/journal.pone.0229209.t003

Table 4. Comparison of apportionment methods on Norwegian data. Abbreviations: HH: Huntington-Hill, EP: Equal Proportions, SL: Sainte-Laguë.

County Population Hamilton/

Vinton

Droop Adams HH/EP SL/

Webster

Jefferson/

D’Hondt

Imperiali Macau Burt-

Harris

Leximin Reference

Østfold 282 000 9 9 9 9 9 9 9 9 9 9 9.43

Akershus 566 399 19 20 18 19 19 20 21 10 18 19 18.95

Oslo 623 966 21 21 20 21 21 22 23 10 20 20 20.88

Hedmark 193 719 6 6 7 6 6 6 6 9 7 7 6.48

Oppland 187 254 6 6 6 6 6 6 6 9 6 6 6.26

Buskerud 269 003 9 9 9 9 9 9 9 9 9 9 9.00

Vestfold 238 748 8 8 8 8 8 8 8 9 8 8 7.99

Telemark 170 902 6 6 6 6 6 6 5 9 6 6 5.72

Aust-Agder 112 772 4 4 4 4 4 3 3 8 4 4 3.77

Vest-Agder 176 353 6 6 6 6 6 6 5 9 6 6 5.90

Rogaland 452 159 15 15 15 15 15 16 16 10 15 15 15.13

Hordaland 498 135 17 17 16 17 17 17 18 10 16 16 16.67

Sogn og

Fjordane

108 700 4 4 4 4 4 3 3 8 4 4 3.64

Møre og

Romsdal

259 404 9 9 9 9 9 9 9 9 9 9 8.68

Sør-Trøndelag 302 755 10 10 10 10 10 10 10 9 10 10 10.13

Nord-

Trøndelag

134 443 5 4 5 4 5 4 4 8 5 5 4.50

Nordland 239 611 8 8 8 8 8 8 8 9 8 8 8.02

Troms 160 418 5 5 6 5 5 5 5 8 6 5 5.37

Finnmark 74 534 2 2 3 3 2 2 1 7 3 3 2.49

https://doi.org/10.1371/journal.pone.0229209.t004
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shows the sizes of counties, their respective shares and the apportionments proposed by the

different methods.

The data are typical in the sense, that the solutions prescribed by the different methods are

very similar. This is quite common in apportionment, see other examples in refs. [26] or [23].

Given that the apportionment may significantly affect the outcome of the election even small

differences matter. The computation of the SRD values are displayed in Table A in S1 Appen-

dix, the results of the CRRN analysis is shown in Fig 2.

With the exception of the exotic Macau method all apportionment methods perform well.

Somewhat unexpectedly, the Imperiali method, a non-regular divisor method, shares first

place with the Leximin method. This is even more perplexing considering that the Imperiali

method does not satisfy exact quota. That is, the Imperial method may not produce a perfectly

proportional allocation even if such exists. The reason becomes clear when we consider how

the Imperiali method handles the quotas. Oslo the largest administrative region gets more

seats than its upper quota, while Finnmark, the smallest county gets less than its lower quota.

Note, that SRD is insensitive for this kind of bias, the ranking does not change if the largest

receives more, or if the smallest obtains less seats. Although the Imperiali seems to favor large

states even more than the Jefferson/D’Hondt method, it treats the middle more fairly.

Although the Macau method is inferior compared to the other methods, it still falls outside

of the 5% threshold, which means that it is better than a random ranking. Cross-validation

also reveals how the solutions are organized (see Fig 3). According to the Wilcoxon test, the

Leximin and the Imperiali methods perform significantly better than the Adams or Jefferson/

D’Hondt method. The latter two is significantly better, than the EP, Webster and Hamilton

methods, while the Macau method lags far behind.

Fig 2. Comparison of ranks with random numbers. All (normalized) SRD values fall outside the 5% threshold (XX1:

5% threshold, Med: Median, XX19: 95% threshold). The black curve is a continuous approximation of the cumulative

distribution function of the random SRD values.

https://doi.org/10.1371/journal.pone.0229209.g002
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Note that, in the Apportionment problem the rows of the data matrix are dependent in the

sense that the total allotment should be equal to the House size. Thus, cross-validation might

contain some noise for solutions that are not consistent. Divisor methods are not affected

since they are coherent [35], meaning they assign the same allotment for a sub-set of the

objects. In Social Choice literature, consistency is the most common expression used to

describe this property [36]. In apportionment, the terminology is less consistent and coher-

ence, consistency and uniformity have been equally used. Note that largest remainder methods

and optimization methods may not be coherent in this sense. Overall the result should be

robust as errors are scarce and cancel out, but for a precise ranking the solutions should be

recalculated in each step during the cross-validation.

Case study No 2: Districting

Ever since US Senator Elbridge Gerry redesigned Essex County’s state senate districts in 1812

to help his re-election, districting is under the spotlight of public attention and there is a con-

tinuous academic debate on how legislators ought to do it and how the court should deal with

Fig 3. Cross validation—The Wilcoxon test arranges the solutions into four equivalence classes. ‘*’ indicates that

there is no significant difference between the solutions, while ‘<’ indicates that the solutions significantly differ (at the

5% level).

https://doi.org/10.1371/journal.pone.0229209.g003
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the problematic cases. Fig 4 demonstrates how a politically balanced state can be apportioned

to favour one of the parties. Although, here compactness is not an issue, in real life voters are

distributed much more erratically and gerrymandered districts tend to have a weird shape.

One of the main questions of districting is whether to construct politically competitive dis-

tricts, where voters have diverse interests, or to promote proportionality by creating homoge-

neous districts for all numerically significant sets of political opinions in the electorate [37].

The picture is further complicated by the fact that residential patterns and human geography

may cause ‘unintentional gerrymandering’, whereby one party’s voters are more geographi-

cally clustered than those of the opposing party [38]. A more recent discussion focuses on how

district level competitiveness relates to the marginal benefit of parties’ efforts to mobilize vot-

ers, and how competitiveness can be measured [39, 40].

Perhaps the most controversial case in the US is the ‘earmuffs’ of Chicago, the 4th congres-

sional district of Illinois (Fig 5, left). The constituency which consists of mainly latino voters

practically enfolds the 7th district (Fig 5, right), a predominantly black community. The thin

line that connects the northern and souther block and ensures the contiguity of the district is

an uninhabited highway. The reason (or rather the excuse) of the design is to make sure that

both the latino and the black communities are represented in the congress. In reality, this is

nothing more than segregation by race, that ignores all cultural aspects: the neighborhood to

the north is primarily Puerto Rican, and the one to the south is primarily Mexican-American.

Fig 5. The 4th (left) and 7th (right) congressional districts of Illinois, 108th Congress of the United States.

https://doi.org/10.1371/journal.pone.0229209.g005

Fig 4. Politically competitive districts (left) vs. gerrymandered districts (right).

https://doi.org/10.1371/journal.pone.0229209.g004
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Stern [37] warns, that single-member districts drawn to guarantee minority representation

create several problems (e.g. the group representing the majority interest in the given district

loses incentive for nominating competitive candidates). On the other hand, Gilligan and Mat-

susaka [41] argue that districting plans that maximize the homogeneity of preferences within

each district eliminate policy bias between the median voter and the elected legislature.

It is a delicate issue whether the shapes of the 4th and 7th district of Illinois are justified or

not, and discussing it would bring us far from the subject of this paper. Yet, these constituen-

cies give us an excellent idea how hand-drawn districts look like where compactness of the

constituency was disregarded.

Compactness measures. Compactness has been strongly advocated by legal and political

experts as a remedy for partisan gerrymandering [37, 42, 43]. A related stream of literature

focuses on measuring redistricting changes, see e.g. [44] and the references therein.

There is an intensive debate on what and how compactness measures need to test. For

instance, the Iowa Code [45] prescribes that both the length-width difference and the perime-

ter of a district should be minimal and the total length-width difference and the total perimeter

distance computed for all individual districts in a plan can be compared to an alternative dis-

tricting plan.

In contrast, many compactness measures compare the shape of a constituency to an ideal

formation: a circle or rectangle. There are other approaches: Chambers and Miller [46] suggest

a path-based measure without specifying an ideal form. Here we review some of the classical

measures as well as a novel method recommended recently by Nagy and Szakál [47].

The Polsby-Popper test [42] compares the area of the district to the area of a circle with the

same perimeter as the district. The Reock test [48] compares the area of the district to the area

of the smallest circle within which the district will fit. The Lee-Sallee test [49] again considers a

circle with the same area as the district and places it in such way that the center of mass of the

two shapes coincides, then takes the ratio of the area of their intersection and the area of their

union. The Moment Invariants comes from image processing and also considers the circle the

most compact shape. The Length-to-width test takes the (absolute) difference between the dis-

tances of the Westernmost and Easternmost points and the Southernmost and Northernmost

points of the district [50].

Formally, let D represent the set of geometric shapes corresponding to the constituencies.

We denote the area of a constituency D 2 D as A(D), while let P(D) be its perimeter. Further-

more, let C0 be the smallest circumscribed circle of D, and C@ a circle such that A(C0) = A(D),

and the center of mass for C@ and D coincides.

Polsby-Popper CPPðDÞ ¼
4p � AðDÞ
ðPðDÞÞ2

Reock CRðDÞ ¼
AðDÞ
AðC0Þ

Lee-Sallee CLSðDÞ ¼
AðD \ C@Þ

AðD [ C@Þ

Moment Invariants Cb
MIðDÞ ¼

ðAðDÞÞbþ1

pbðbþ1Þ

R R

D
ðx2þy2Þbdxdy

; if b > 0

pbðbþ1Þ

R R

D
ðx2þy2Þbdxdy

ðAðDÞÞbþ1 ; if b 2 ð� 1; 0Þ:

8
>><

>>:

All the above measures range between 0 and 1, and CPPðDÞ ¼ CRðDÞ ¼ CLSðDÞ ¼
Cb
MIðDÞ ¼ 1, D is a circle. To make the Length-to-width measure comparable to the other
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measures we transform the values into the [0, 1] interval. Let LW(D) stand for the length-

width difference of district D, then we standardize the data with the following formula

Length-to-width CLWðDÞ ¼ 1 �
LWðDÞ

maxD02DfLWðD0Þg
:

Comparing compactness measures. To test how compactness measures perform on real

data, we use the dataset provided in [47], where compactness of the congressional districts of

Arkansas, Iowa and Kansas are compared (Table 5 and Fig 6). Unlike to the apportionment

problem, in districting there is no natural reference point. Since the ideal shape, a circle, has a

compactness measure of 1, and generally the greater the value the more compact the shape is,

Table 5. Compactness measures for various congressional districts of the 107th Congress of the United States (Source: [47] and own compilation).

Districts Mom. Inv. (β = −0.5) Mom. Inv. (β = 1) Mom. Inv. (β = 2) Lee-Sallee Reock Polsby-width Length-to-(Avg) Reference

Arkansas 1st 0.936 0.810 0.584 0.721 0.396 0.144 0.924 0.645

Arkansas 2nd 0.924 0.640 0.301 0.582 0.311 0.221 0.693 0.524

Arkansas 3rd 0.940 0.698 0.365 0.619 0.328 0.327 0.824 0.586

Arkansas 4th 0.947 0.753 0.474 0.617 0.394 0.260 0.292 0.534

Iowa 1st 0.944 0.790 0.527 0.655 0.388 0.403 0.980 0.670

Iowa 2nd 0.895 0.504 0.170 0.483 0.208 0.255 0.720 0.462

Iowa 3rd 0.881 0.544 0.224 0.445 0.254 0.302 0.025 0.382

Iowa 4th 0.948 0.758 0.483 0.610 0.428 0.468 0.549 0.606

Iowa 5th 0.945 0.729 0.399 0.654 0.273 0.323 0.418 0.534

Kansas 1st 0.950 0.734 0.430 0.790 0.387 0.431 0.000 0.532

Kansas 2nd 0.854 0.577 0.298 0.439 0.355 0.230 0.353 0.443

Kansas 3rd 0.910 0.743 0.472 0.619 0.389 0.355 0.942 0.633

Kansas 4th 0.923 0.655 0.332 0.549 0.346 0.467 0.343 0.516

https://doi.org/10.1371/journal.pone.0229209.t005

Fig 6. Congressional districts of Arkansas, Iowa and Kansas, 107th Congress (Source: [51]).

https://doi.org/10.1371/journal.pone.0229209.g006
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the best (maximum) or worst (minimum) values could be potential reference points. Notice

however, that although all compactness measures map into [0, 1], some of them have a pre-

ferred subinterval. For instance, the Lee-Sallee index ranges between 0.4 and 0.8, while the

Polsby-Popper between 0.1 and 0.5. Choosing the maximum values would effectively result in

setting the Moment Invariants with (β = −0.5) as the reference. The minimum values are no

better as they almost always coincide with the Polsby-Popper scores. Hence, in this case, the

minimum or maximum values do not allow the objective comparison of these measures.

Instead we opt for a third candidate and set the average as the reference point.

Theoretical and practical arguments equally support this choice. Firstly, if we think of the

compactness measures as tests that estimate compactness with some error, then by taking the

average these errors cancel out by the maximum likelihood principle. The fact that the mea-

sures capture completely different aspects of compactness actually strengthen this point, as it

is less likely that the average is affected by some kind of systematic bias. Secondly, if a policy

maker has to decide which measure to impose as a legal requirement, she might prefer to

choose something close to the average as she doesn’t want her decision to be challenged.

Table B of S1 Appendix displays the computation of SRD values, Fig 7 shows the result of

CRRN test. There are a couple of interesting observations to make. In contrast to apportion-

ment, here we see great distances between the SRD values. Moreover, even the best SRD scores

are not that good—there is room for improvement. The Moment Invariant measures obtained

some of the best and worst SRD scores, which indicates that the parameter of the function

should be chosen carefully. Nagy and Szakál [47] suspect, based on empirical observations,

that the most effective interval for the β parameter is [1, 3]. Indeed β = −0.5 is second worst

among the solutions and just barely falls outside the error limit. Finally, the most apparent fea-

ture is that the Polsby-Popper test falls within the error limit, that is, it cannot be distinguished

from random ranking.

Fig 7. Comparison of ranks with random numbers (cf. Fig 2). Great distance between the SRD values.

https://doi.org/10.1371/journal.pone.0229209.g007

PLOS ONE Apportionment and districting by Sum of Ranking Differences

PLOS ONE | https://doi.org/10.1371/journal.pone.0229209 March 23, 2020 15 / 20

https://doi.org/10.1371/journal.pone.0229209.g007
https://doi.org/10.1371/journal.pone.0229209


Cross-validation (Fig 8) confirms that there is no significant difference between Moment

Invariants with β = 1 and β = 2 and the Lee-Sallee index. The triumvirate is followed by the

Length-to-width test, then by the Reock test and Moment Invariant with β = −0.5, which again

do not differ significantly. Finally comes, lagging somewhat behind, the Polsby-Popper test. In

this case, objects are independent, no consistency-issues arise.

Arguably, measuring compactness is a complicated, multi-dimensional problem. The bad

SRD score of the Polsby-Popper test might only indicate that this test measures a different

aspect of the problem. On the other hand, this can be said basically about every other tests.

Table 6 summarizes the relative distances of the solutions. One-by-one, we fixed each solution

as the reference and computed the distances in SRD scores for each other solution. The

Polsby-Popper test, as expected, is quite far away from the other measures, but so is the

Length-to-width test, and none of them seems to be particularly close to each other (with the

exception of the Moment Invariants with β = 1 and β = 2). If we think of the average value as a

collective wisdom that reflects the judgment of all the measures, then one may be inclined to

say that the Polsby-Popper test is unsuitable for measuring compactness of constituencies. We

do not wish to formulate such a strong claim. A sample of 13 districts is hardly big enough to

make such a generalization. Further analysis is needed to resolve this issue.

Fig 8. Cross validation. ‘*’ indicates that there is no significant difference between the solutions, while ‘<’ indicates

that the solutions significantly differ.

https://doi.org/10.1371/journal.pone.0229209.g008
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Nevertheless, this result has a practical consequence. Policy makers that seek to reform

districting law and impose a compactness requirement might be less inclined to propose the

Polsby-Popper test. Since the test’s measurements are off from the average, its results can be

easily challenged by an adverse party armed with a different measure.

Summary and conclusion

Sum of Ranking Differences is a novel statistical method, which can be valuable for testing

competing solutions in Political Science and Social Choice. We provided two case studies to

demonstrate its effectiveness in fair division and fair assessment problems. For the former we

looked at the apportionment of the Norwegian parliamentary seats. For the latter we consid-

ered the compactness of the constituencies of three US states.

In the apportionment problem, all the methods under examination—with the exception

of the Macau-method—performed very well. Although the Leximin method fit the data the

best, it was only slightly better than classical solution methods. Overall, optimization meth-

ods produced better SRD values than largest remainder methods. However, to announce a

clear ranking of the methods more tests are needed. Interestingly, the non-regular Imperiali

method performed just as well as the Leximin method. The likely cause is, that the Imperiali

method may violate both the upper- and lower quota in the same time, and SRD does not

penalize this behavior. Still, the outstanding SRD score indicates that the Imperiali method

is not just another exotic apportionment method, but a viable alternative to the classical

rules.

In the districting problem, the SRD values covered a far greater range. A novel parametric

method, the Moment Invariants performed very well compared to the classical compactness

measures when the parameter was chosen carefully, that is for β = 1 and β = 2. However, for

β = −0.5 the method fares poorly. The SRD score of the Polsby-Popper test was no better than

an SRD value of a random ranking, which suggests that the test measures a different dimension

of compactness. Further analysis is needed to decide whether the test is suitable for measuring

the compactness of constituencies. In reality, the reliability of compactness measures are lim-

ited as they do not take into account the natural boundaries (e.g. coastlines). This can be

avoided by looking at the redistricting problem on a higher level and compare total compact-

ness of competing redistricting plans.

In summary, SRD seems to be an excellent tool in comparing solutions in various fields of

applied science. Initial steps has been already taken to provide theoretical foundations for its

success. Lourenço and Lebensztajn [4] showed that SRD provides a smaller set of optimal

Table 6. The relative heat map shows the distances between solutions measured in SRD score, when the reference is set one-by-one as one of the solutions.

Mom. Inv. β = 1 Mom. Inv. β = 2 Lee-Sallee Reock Mom. Inv. β = -0.5 Polsby-Popper Length-to-width

Mom. Inv. β = 1 0.00 0.00 30.95 21.43 38.10 50.00 52.38

Mom. Inv. β = 2 0.00 0.00 30.95 21.43 38.10 50.00 52.38

Lee-Sallee 30.95 30.95 0.00 47.62 28.57 52.38 50.00

Reock 21.43 21.43 47.62 0.00 45.24 57.14 61.90

Mom. Inv. β = -0.5 38.10 38.10 28.57 45.24 0.00 50.00 71.43

Polsby-Popper 50.00 50.00 52.38 57.14 50.00 0.00 73.81

Length-to-width 52.38 52.38 50.00 61.90 71.43 73.81 0.00

Colour code: x<= 7.4 14.8 22.1 29.5 36.9

44.3 51.7 59.0 66.4 73.8

https://doi.org/10.1371/journal.pone.0229209.t006
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solutions from among the possible groupings of similar solutions of the Pareto front. An axi-

omatic analysis of SRD would further strengthen its reliability.

Supporting information

S1 Appendix. Computation of SRD values in the apportionment problem and Computa-

tion of SRD values in the districting problem.

(PDF)
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