12 research outputs found

    Stromal Cell-Derived Factor 1 Polymorphism in Retinal Vein Occlusion

    Get PDF
    BACKGROUND: Stromal cell-derived factor 1 (SDF1) has crucial role in the regulation of angiogenesis and ocular neovascularisation (NV). The purpose of this study was to evaluate the association between SDF1-3'G(801)A polymorphism and NV complications of retinal vein occlusion (RVO). METHODS: 130 patients with RVO (median age: 69.0, range 35-93 years; male/female- 58/72; 55 patients had central RVO, 75 patients had branch RVO) were enrolled in this study. In the RVO group, 40 (30.8%) patients were diagnosed with NV complications of RVO and 90 (69.2%) patients without NVs. The median follow up period was 40.3 months (range: 18-57 months). The SDF1-3'G(801)A polymorphism was detected by PCR-RFLP. Allelic prevalence was related to reference values obtained in the control group consisted of 125 randomly selected, age and gender matched, unrelated volunteers (median age: 68.0, range 36-95 years; male/female- 53/72). Statistical analysis of the allele and genotype differences between groups (RVO patients vs controls; RVO patients with NV vs RVO patients without NV) was determined by chi-squared test. P value of <0.05 was considered statistically significant. RESULTS: Hardy-Weinberg criteria was fulfilled in all groups. The SDF1-3'G(801)A allele and genotype frequencies of RVO patients were similar to controls (SDF1-3'A allele: 22.3% vs 20.8%; SDF1-3'(801)AA: 5.4% vs 4.8%, SDF1-3'(801)GG: 60.8% vs 63.2%). The frequency of SDF1-3'(801)AA and SDF1-3'(801)GA genotypes, as well as the SDF1-3'(801)A allele frequency were higher in RVO patients with NV versus in patients without NV complication (SDF1-3'(801)AA+AG genotypes: 57.5% vs 31.1%, p = 0.008; SDF1-3'(801)A allele: 35.0% vs 16.7%, p = 0.002) or versus controls (SDF1-3'(801)AA+AG genotypes 57.5% vs 36.8%, p = 0.021; SDF1-3'(801)A allele: 35.0% vs 20.8% p = 0.01). Carrying of SDF1-3'(801)A allele increased the risk of neovascularisation complications of RVO by 2.69 (OR, 95% CI = 1.47-4.93). CONCLUSION: These findings suggest that carrying SDF1-3'(801)A allele plays a role in the development of neovascular complications in retinal vein occlusion

    Leber congenital amaurosis: first genotyped Hungarian patients and report of 2 novel mutations in the CRB1 and CEP290 genes.

    No full text
    PURPOSE: To introduce the first Hungarian patients with genetically defined Leber congenital amaurosis (LCA) and to report 2 novel mutations. METHODS: Seven otherwise healthy patients (4-29 years, 5 male and 2 female) who had an onset of severe visual impairment before age 2 years were investigated. The diagnosis was established in all individuals by medical history, funduscopy, and full-field electroretinogram (ERG). Ocular examination included visual acuity testing, digital fundus photography, and in 6 patients retinal imaging with optical coherence tomography (OCT). Arrayed primer extension microarray screening was performed in all probands. In 2 patients, further Sanger sequencing and targeted next-generation sequencing revealed the second disease allele. RESULTS: A cone-rod type LCA was revealed in 4 patients and a rod-cone type disease in 3 patients. Five patients presented with maculopathy. Optical coherence tomography (OCT) imaging showed diffuse retinal thickening in 3 probands with severe macular atrophy in one. Full-field ERGs were undetectable or residual in all patients. Genetic screening revealed AIPL1, CRB1, and CEP290 gene-related pathology in 6 patients; in 1 proband, no mutation was found. Three homozygous and 3 compound heterozygous mutations were identified. Two novel variants were detected: c.2536G>T (p.G846X) in the CRB1 gene and c.4929delA (p.Lys1643fsX2) in the CEP290 gene. CONCLUSIONS: Genetic subtypes identified are among the most common ones in LCA; the phenotypes are consistent with those reported previously. Both novel mutations are predicted to result in a premature translation termination. The phenotype related to the novel CRB1 mutation results in severe atrophic maculopathy
    corecore