51 research outputs found

    Rapid Detection of Carbapenem Resistance in Acinetobacter baumannii Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

    Get PDF
    Rapid detection of carbapenem-resistant Acinetobacter baumannii strains is critical and will benefit patient care by optimizing antibiotic therapies and preventing outbreaks. Herein we describe the development and successful application of a mass spectrometry profile generated by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) that utilized the imipenem antibiotic for the detection of carbapenem resistance in a large series of A. baumannii clinical isolates from France and Algeria. A total of 106 A. baumannii strains including 63 well-characterized carbapenemase-producing and 43 non-carbapenemase-producing strains, as well as 43 control strains (7 carbapenem-resistant and 36 carbapenem-sensitive strains) were studied. After an incubation of bacteria with imipenem for up to 4 h, the mixture was centrifuged and the supernatant analyzed by MALDI-TOF MS. The presence and absence of peaks representing imipenem and its natural metabolite was analyzed. The result was interpreted as positive for carbapenemase production if the specific peak for imipenem at 300.0 m/z disappeared during the incubation time and if the peak of the natural metabolite at 254.0 m/z increased as measured by the area under the curves leading to a ratio between the peak for imipenem and its metabolite being <0.5. This assay, which was applied to the large series of A. baumannii clinical isolates, showed a sensitivity of 100.0% and a specificity of 100.0%. Our study is the first to demonstrate that this quick and simple assay can be used as a routine tool as a point-of-care method for the identification of A. baumannii carbapenemase-producers in an effort to prevent outbreaks and the spread of uncontrollable superbugs

    Co-occurrence of carbapenemase encoding genes in Acinetobacter baumannii, a dream or reality?

    No full text
    International audienceBackground: Acinetobacter baumannii is an important opportunistic pathogen that is rapidly evolving towards multidrug resistance and is responsible for life-threatening infections. Carbapenems are commonly used to treat A. baumannii infections but the emergence of carbapenemase encoding genes, such as bla(OXA-23-like), bla(OXA-24-like), bla(OXA-58-like), and bla(NDM) has been reported. Moreover, several studies have reported the co-occurrence of two distinct carbapenemases in some isolates. The aim of the present study is to demonstrate whether the phenomenon of co-occurrence of two distinct carbapenemase encoding genes in a single isolate still exists. Results: We studied six strains of A. baumannii including one harboring bla(OXA-23-like) and bla(OXA-24-like) genes and five with bla(OXA-23-like) and bla(NDM) genes. One colony of each strain was inoculated in sterile water and diluted ten-fold. Each dilution was cultivated on trypticase soy agar plates for 24 h at 37 degrees C and the isolated bacteria were analyzed. For two of the six tested strains, we identified two different populations of A. baumannii, each with a different carbapenemase, genes encoding aminoglycoside modifying enzymes, resistance phenotype, and clonal type. In addition, the two different populations had the same aspect on the agar plate. Conclusions: Here, we demonstrate that A. baumannii infections could be linked to multiple clones harboring different carbapenemase encoding genes in the same sample. In addition, we describe an easy method of verifying the presence of co-occurrence of carbapenemase in one isolate

    Description of strain FC3(T) as the neotype strain of Actinobaculum ă massiliense

    No full text
    International audienceActinobaculum massiliense (Euzeby, 2006) was isolated from the urine of ă an elderly woman in 2001. Unfortunately, the strain deposited as the ă type strain was, by error, an Actinobaculum schaalii strain (Yassin et ă al., 2015). In 2015, we isolated a new strain of A. massiliense, FC3, ă from the urine of a 12-year-old patient with acute cystitis. We herein ă present the characteristics of strain FC3 (=CSUR P1982=DSM 100580) and ă formally propose it as the neotype strain of A. massiliense

    Characterization of OXA-48-like-producing Enterobacteriaceae isolated from river water in Algeria

    No full text
    International audienceThe spread of carbapenemase-producing Enterobacteriaceae (CPE) is a significant problem for healthcare worldwide. The prevalence of carbapenem-resistant Enterobacteriaceae (CPE) in water environments in Algeria are unknown. The aim of this study was to screen for the presence of CPE isolates in the Soummam River in Bejaia, Algeria. Isolates of Enterobacteriaceae recovered from twelve samples of river water and showing reduced susceptibility to carbapenems were included in this study. The isolates were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Isolates were subjected to antimicrobial susceptibility testing and the modified Carba NP test. Carbapenemase and extendedspectrum b-lactamase (ESBL) determinants were studied by PCR amplification and sequencing. The clonal relatedness between isolates was studied by Multilocus Sequence Typing (MLST) method. A total of 20 carbapenem-resistant Enterobacteriaceae strains were included in this study, identified as Escherichia coli (n = 12), Klebsiella pneumoniae (n = 3), Raoultella ornithinolytica (n = 3), Citrobacter freundii (n = 1) and Citrobacter braakii (n = 1). Carbapenemase genes identified in this study included blaOXA-48, observed in 17 isolates (9 E. coli, 3 K. pneumoniae, 3 R. ornithinolytica, 1 C. freundii and 1 C. braakii), and blaOXA-244, a variant of blaOXA-48, was found in three E. coli isolates. MLST showed that 12 E. coli strains belonged to six different sequence types (ST559, ST38, ST212, ST3541, 1972 and ST2142), and we identified three different STs in K. pneumoniae isolates, including ST133, ST2055, and a new sequence type: ST2192. This study showed the presence of OXA-48-like-producing Enterobacteriaceae in water environments and highlighted the potential role of aquatic environments as reservoirs of clinically relevant antimicrobial-resistant bacteria, with the potential to spread throughout the community. (C) 2017 Elsevier Ltd. All rights reserved

    Infections Due to Carbapenem-Resistant Bacteria in Patients With Hematologic Malignancies

    No full text
    In developed countries, hematological malignancies (HM) account for 8 to 10% of cancers diagnosed annually and one-third of patients with HM (HMP) are expected to die from their disease. The former wide spectrum ``magic bullet,'' imipenem, has been ousted by the emergence of carbapenem resistant (CR) pathogens. In endemic areas, infections with CR-bacteria occur in vulnerable patients, notably in HMP, who suffer from high mortality related to infectious complications. In this work, we reviewed epidemiologic and clinical factors associated with CR-infections in adult HMP and data on CR-related mortality and antibiotic treatments in this population. We found that resistance profile of strains involved in HMP infections, mainly bacteremia, reflect local epidemiology. Significant risk factors for infections with CR-bacteria include sex male, age around 50 years old, acute leukemia, selvage chemotherapy, neutropenia, and digestive colonization by CR-bacteria. Mortality rate is high in HMP infected with CR-Enterobacteriaceae, more particularly in case of acute myeloid leukemia and unresolved neutropenia, due to inappropriate empiric management and delayed administration of targeted antibiotics, such as tigecycline, colistin, or new associations of active drugs. Thus, we developed an algorithm for clinicians, assessing the incremental risk for CR-bacterial infection occurrence and mortality in febrile HMP, to guide decisions related to empirical therapeutic strategies

    Chemical Composition and Synergistic Potential of Mentha pulegium L. and Artemisia herba alba Asso. Essential Oils and Antibiotic against Multi-Drug Resistant Bacteria

    No full text
    International audienceThe essential oils were obtained by hydrodistillation from aerial parts of Mentha pulegium L. (M. pulegium L.) and Artemisia herba alba (A. herba alba) Asso. and analyzed by gas chromatography–flame ionization detector chromatograpy (GC–FID) and gaz chromatography–mass spectrometry (GC–MS). The antibacterial activities of the oils were determined by the disk diffusion method and a microdilution broth assay against six bacteria stains. The combinations of these essential oils with antibiotics were evaluated against two multi-drug-resistant bacteria strains: imipenem-resistant Acinetobacter baumannii (IRAB S3310) and methicillin-resistant Staphylococcus aureus (MRSA S19). The chemical analysis of M. pulegium essential oil revealed the presence of pulegone (74.8%) and neoisomenthol (10.0%). A. herba alba essential oil was characterized by camphor (32.0%), α-thujone (13.7%), 1,8-cineole (9.8%), β-thujone (5.0%), bornéol (3.8%), camphene (3.6%), and p-cymene (2.1%). All strains tested except Pseudomonas aeruginosa were susceptible to these oils. The combinations of essential oils with antibiotics exerted synergism, antagonism, or indifferent effects. The best effect was observed with A. herba alba essential oil in association with cefoxitin (CX) against MRSA S19. However, for IRAB S3310, the strongest synergistic effect was observed with M. pulegium in association with amikacin (AK). This study demonstrated that M. pulegium and A. herba alba essential oils have antibacterial activities which could be potentiated by antibiotics especially in the case of IRAB S3310

    Molecular characterisation of extended-spectrum beta-lactamase- and plasmid AmpC-producing Escherichia coli strains isolated from broilers in Bejaia, Algeria

    No full text
    International audienceThis study aimed to characterise the molecular support of antibiotic resistance in expanded-spectrum cephalosporin (ESC)-resistant Escherichia coli isolates recovered from healthy broilers in Bejaia, northeast Algeria. A total of 61 intestinal swabs from slaughtered broilers from four regions in Bejaia locality, Algeria, were collected between February and April 2014, from which 20 ESC-resistant E. coli strains were isolated. Escherichia coli isolates were identified by classical biochemical and MALDI-TOF methods. Antibiotic susceptibility testing was performed using disk diffusion and Etest methods. Screening for beta-lactamases, aminoglycoside-modifying enzyme (AME)-encoding genes and qnr determinants was performed by PCR and sequencing. Clonal relatedness was determined using molecular typing by multilocus sequence typing (MLST). Antibiotic susceptibility testing revealed that the isolates showed high rates of resistance (>90%) to amoxicillin, amoxicillin/clavulanic acid, piperacillin/tazobactam, aztreonam, ceftazidime, streptomycin, tobramycin, nalidixic acid and ciprofloxacin. Low rates of resistance were observed for kanamycin (35%), amikacin (30%), cefoxitin (20%) and cefotaxime (15%). Molecular characterisation revealed that all of the isolates expressed the bla(TEM-1) gene. Fourteen of them harboured the bla(SHV-12) gene, two harboured the bla(CTX-M-1) gene and four isolates harboured bla(CMY-2). Screening for AME-encoding genes demonstrated that all isolates contained the aadA gene. In addition, qnrA was detected as the quinolone resistance determinant in 13 isolates. MLST revealed four known sequence types (STs), including ST744, ST38, ST1011 and ST2179, as well as one new sequence type (ST5086). Here we report the first study describing the clonal diversity of extended-spectrum beta-lactamase (ESBL)- and plasmid AmpC-producing E. coli isolated from healthy broilers in Algeria. (C) 2016 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved

    Prevalence and emergence of carbapenemases-producing Gram-negative bacteria in Mediterranean basin

    No full text
    International audienceThe emergence and the global spread of carbapenemases concern to health services worldwide. Their celestial rise among Gram-negative bacilli has challenged both the scientific and pharmaceutical sectors. Indeed, infections caused by these bacteria have limited treatment options and have been associated with high mortality and morbidity rates. Carbapenemase producers are mainly identified among Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii and still mostly in hospital settings and rarely in the community. They are closely related to KPC, VIM, IMP, NDM, and OXA-48 types. The encoding genes are mostly plasmid located and associated with various mobile genetic elements. The Mediterranean area is of interest due to a great diversity and population mixing. The prevalence of carbapenemases is particularly high and variant among countries, partially depending on the population exchange relationship between the regions and the possible reservoirs of each carbapenemase. This review described the epidemiology of carbapenemases in this region of the world highlighting the worrisome situation and the need to screen and detect these enzymes to prevent and control their dissemination especially as it is clear that very few novel antibiotics will be introduced in the next few years, making the dissemination of carbapenem-resistant Gram-negative bacteria of crucial importance worldwide
    • …
    corecore