769 research outputs found

    Synthesis and Characterization of Electro-Explosive Magnetic Nanoparticles for Biomedical Applications

    Get PDF
    Nowadays there are new magnetic nanostructures based on bioactive metals with low toxicity and high efficiency for a wide range of biomedical applications including drugs delivery, antimicrobial drugs design, cells' separation and contrasting. For such applications it is necessary to develop highly magnetic particles with less than100 nm in size. In the present study magnetic nanoparticles Fe, Fe[3]O[4] and bimetallic Cu/Fe with the average size of 60- 90 nm have been synthesized by electrical explosion of wire in an oxygen or argon atmosphere. The produced nanoparticles have been characterized with transmission electron microscopy, X-ray phase analysis, and nitrogen thermal desorption. The synthesized particles have shown antibacterial activity to gram-positive (S. aureus, MRSA) and gramnegative (E. coli, P. aeruginosa) bacteria. According to the cytological data Fe, Fe[3]O[4]and Cu/Fe nanoparticles have effectively inhibited viability of cancer cell lines Neuro-2a and J774. The obtained nanoparticles are promising for new antimicrobial drugs and antitumor agents' developmen

    Synthesis and Characterization of Electro-Explosive Magnetic Nanoparticles for Biomedical Applications

    Get PDF
    Nowadays there are new magnetic nanostructures based on bioactive metals with low toxicity and high efficiency for a wide range of biomedical applications including drugs delivery, antimicrobial drugs design, cells' separation and contrasting. For such applications it is necessary to develop highly magnetic particles with less than100 nm in size. In the present study magnetic nanoparticles Fe, Fe[3]O[4] and bimetallic Cu/Fe with the average size of 60- 90 nm have been synthesized by electrical explosion of wire in an oxygen or argon atmosphere. The produced nanoparticles have been characterized with transmission electron microscopy, X-ray phase analysis, and nitrogen thermal desorption. The synthesized particles have shown antibacterial activity to gram-positive (S. aureus, MRSA) and gramnegative (E. coli, P. aeruginosa) bacteria. According to the cytological data Fe, Fe[3]O[4]and Cu/Fe nanoparticles have effectively inhibited viability of cancer cell lines Neuro-2a and J774. The obtained nanoparticles are promising for new antimicrobial drugs and antitumor agents' developmen

    Preparation of nano/micro bimodal aluminum powder by electrical explosion of wires

    Get PDF
    Electrical explosion of aluminum wires has been shown to be a versatile method for the preparation of bimodal nano/micro powders. The energy input into the wire has been found to determine the relative content of fine and coarse particles in bimodal aluminum powders. The use of aluminum bimodal powders has been shown to be promising for the development of high flowability feedstocks for metal injection molding and material extrusion additive manufacturing

    Investigation of the peculiarities of oxidation of Ti/Al nanoparticles on heating to obtain TiO2/Al2O3 composite nanoparticles

    Get PDF
    The creation of new nanomaterials with improved characteristics, as well as the development of new approaches to obtain such materials is an urgent task in science and technology. One of the promising directions in obtaining improved nanomaterials is the use of precursors in the form of multicomponent metal nanoparticles. Thermal oxidation of bimetallic Ti/ Al nanoparticles obtained by electrical explosion of wires was investigated in this work. Ti/Al nanoparticles have been found to be completely oxidized with the formation of composite TiO2/ Al2O3 nanoparticles after calcination at 900 °C. The formation of TiO2 phase with a rutile structure on heating to 500 °C, and the formation of TiO2 phases with a rutile and anatase structure, as well as α-Al2O3 on heating to 700 °C have been established, in addition to the residue of unoxidized metals. Complete oxidation of Ti/Al nanoparticles occurs when heated to 900 °C. The photochemical activity of TiO2/ Al2O3 composite nanoparticles obtained at 900 °C was studied. The degradation of methyl orange dye reached 55% under UV irradiation for 120 min

    Σ+ and ¯Σ− Polarization in the J/ψ and ψ(3686) Decays

    Get PDF
    From 1310.6×106  J/ψ and 448.1×106  ψ(3686) events collected with the BESIII experiment, we report the first observation of Σ+ and ¯Σ− spin polarization in e+e−→J/ψ[ψ(3686)]→Σ+¯Σ− decays. The relative phases of the form factors ΔΦ have been measured to be (−15.5±0.7±0.5)° and (21.7±4.0±0.8)° with J/ψ and ψ(3686) data, respectively. The nonzero value of ΔΦ allows for a direct and simultaneous measurement of the decay asymmetry parameters of Σ+→pπ0(α0=−0.998±0.037±0.009) and ¯Σ−→¯pπ0(¯α0=0.990±0.037±0.011), the latter value being determined for the first time. The average decay asymmetry, (α0−¯α0)/2, is calculated to be −0.994±0.004±0.002. The CP asymmetry ACP,Σ=(α0+¯α0)/(α0−¯α0)=−0.004±0.037±0.010 is extracted for the first time, and is found to be consistent with CP conservatio

    Chemical behaviour of Al/Cu nanoparticles in water

    Get PDF
    Bimetallic Al/Cu nanoparticles with Al/Cu composition 10:90, 20:80, 40:60 were produced by method of simultaneous electrical explosion of metal pairs in the argon atmosphere. Nanopowders containing 20% and 40% (mass) of aluminum interacted with water at 40–70 °C and formed composite particles that were porous structures of nanopetal pseudoboehmite with nanosized copper-containing inclusions inside. Aluminum in nanopowder with Al/Cu composition 10:90 did not react with water, as far as it is in the phase of intermetallic compounds СuAl2 and Сu4Al9. Nanocomposite produced can be used as an active component of antibacterial agents

    Electrical Explosive TiO2-Ag Composite Nanoparticles with Photochemical and Antibacterial Activity

    Full text link
    The composite TiO2-Ag nanoparticles were produced by electrical explosion of wires. TiO2-Ag nanoparticles are a TiO2 (rutileanatase) core decorated with Ag clusters. It was shown that nanoparticles have enhanced photochemical and antibacterial activity under visible light irradiation.Работа выполнена при финансовой поддержке гранта РНФ № 21-13-00498
    corecore