13 research outputs found

    Analytical validation of a next generation sequencing liquid biopsy assay for high sensitivity broad molecular profiling.

    Get PDF
    Circulating tumor DNA (ctDNA) analysis is being incorporated into cancer care; notably in profiling patients to guide treatment decisions. Responses to targeted therapies have been observed in patients with actionable mutations detected in plasma DNA at variant allele fractions (VAFs) below 0.5%. Highly sensitive methods are therefore required for optimal clinical use. To enable objective assessment of assay performance, detailed analytical validation is required. We developed the InVisionFirst™ assay, an assay based on enhanced tagged amplicon sequencing (eTAm-Seq™) technology to profile 36 genes commonly mutated in non-small cell lung cancer (NSCLC) and other cancer types for actionable genomic alterations in cell-free DNA. The assay has been developed to detect point mutations, indels, amplifications and gene fusions that commonly occur in NSCLC. For analytical validation, two 10mL blood tubes were collected from NSCLC patients and healthy volunteer donors. In addition, contrived samples were used to represent a wide spectrum of genetic aberrations and VAFs. Samples were analyzed by multiple operators, at different times and using different reagent Lots. Results were compared with digital PCR (dPCR). The InVisionFirst assay demonstrated an excellent limit of detection, with 99.48% sensitivity for SNVs present at VAF range 0.25%-0.33%, 92.46% sensitivity for indels at 0.25% VAF and a high rate of detection at lower frequencies while retaining high specificity (99.9997% per base). The assay also detected ALK and ROS1 gene fusions, and DNA amplifications in ERBB2, FGFR1, MET and EGFR with high sensitivity and specificity. Comparison between the InVisionFirst assay and dPCR in a series of cancer patients showed high concordance. This analytical validation demonstrated that the InVisionFirst assay is highly sensitive, specific and robust, and meets analytical requirements for clinical applications

    A phase Ib study of GSK3052230, an FGF ligand trap in combination with pemetrexed and cisplatin in patients with malignant pleural mesothelioma

    No full text
    Background Fibroblast growth factors (FGFs) have a fundamental role in cancer. Sequestering FGFs with GSK3052230 (FP-1039) blocks their ability to activate FGFRs while avoiding toxicities associated with small molecule inhibitors of FGFR, including hyperphosphatemia and retinal, nail, and skin toxicities. Methods A multicenter, open-label, phase Ib study evaluated weekly GSK3052230 added to pemetrexed/cisplatin in patients with treatment-naive, unresectable malignant pleural mesothelioma. Doses were escalated according to a 3 + 3 design, followed by cohort expansion at the maximum tolerated dose (MTD). Endpoints included safety, overall response rate, progression-free survival, and pharmacokinetics. Results 36 patients were dosed at 10, 15, and 20 mg/kg doses of GSK3052230. Three dose-limiting toxicities were observed at 20 mg/kg and one at 15 mg/kg. The MTD was defined as 15 mg/kg and used for cohort expansion. The most common treatment-related adverse events (AEs) were nausea (56%), decreased appetite (36%), infusion reactions (36%), decreased neutrophil counts (36%), and fatigue (33%). The confirmed ORR was 39% (95% CI: 23.1-56.5) (14/36 PRs) and 47% had stable disease (17/36), giving a disease control rate of 86%. At 15 mg/kg GSK3052230 (n = 25), the ORR was 44% (95% CI: 24.4-65.1), and the median PFS was 7.4 months (95% CI: 6.7-13.4). Four patients had disease control for over 1 year, and three were still ongoing. Conclusion At 15 mg/kg weekly, GSK3052230 was well tolerated in combination with pemetrexed/cisplatin and durable responses were observed. Importantly, AEs associated with small molecule inhibitors of FGFR were not observed, as predicted by the unique mechanism of action of this drug.status: publishe

    A phase Ib study of GSK3052230, an FGF ligand trap in combination with pemetrexed and cisplatin in patients with malignant pleural mesothelioma.

    No full text
    Background Fibroblast growth factors (FGFs) have a fundamental role in cancer. Sequestering FGFs with GSK3052230 (FP-1039) blocks their ability to activate FGFRs while avoiding toxicities associated with small molecule inhibitors of FGFR, including hyperphosphatemia and retinal, nail, and skin toxicities. Methods A multicenter, open-label, phase Ib study evaluated weekly GSK3052230 added to pemetrexed/cisplatin in patients with treatment-naive, unresectable malignant pleural mesothelioma. Doses were escalated according to a 3 + 3 design, followed by cohort expansion at the maximum tolerated dose (MTD). Endpoints included safety, overall response rate, progression-free survival, and pharmacokinetics. Results 36 patients were dosed at 10, 15, and 20 mg/kg doses of GSK3052230. Three dose-limiting toxicities were observed at 20 mg/kg and one at 15 mg/kg. The MTD was defined as 15 mg/kg and used for cohort expansion. The most common treatment-related adverse events (AEs) were nausea (56%), decreased appetite (36%), infusion reactions (36%), decreased neutrophil counts (36%), and fatigue (33%). The confirmed ORR was 39% (95% CI: 23.1-56.5) (14/36 PRs) and 47% had stable disease (17/36), giving a disease control rate of 86%. At 15 mg/kg GSK3052230 (n = 25), the ORR was 44% (95% CI: 24.4-65.1), and the median PFS was 7.4 months (95% CI: 6.7-13.4). Four patients had disease control for over 1 year, and three were still ongoing. Conclusion At 15 mg/kg weekly, GSK3052230 was well tolerated in combination with pemetrexed/cisplatin and durable responses were observed. Importantly, AEs associated with small molecule inhibitors of FGFR were not observed, as predicted by the unique mechanism of action of this drug

    Fusion sensitivity analysis.

    No full text
    <p>Blue rectangles represent fusions that were detected and grey represents those missed. (A) Dilution of Horizon reference material containing 2 fusions (ALK and ROS1) across dilution levels (vertical) and operator/lot (horizontal), (B) Set 1 of contrived material based on published DNA breakpoints (AF 1% and 0.5%, 2 operators), (C) Set 2 of contrived material based on published DNA breakpoints (AF 1% and 0.5%, 2 operators, 2 reagent lots) and (D) Contrived material based on randomly generated fusion breakpoints. Different operators performed different parts of this fusion study.</p

    Sensitivity for SNVs (A, C) and indels (B, D).

    No full text
    <p><b>A</b> and <b>B</b> show the sensitivity as a function of the allele fraction of the reference mutations. Each line represents a different operator/Lot combination. <b>C</b> and <b>D</b> show the full set of calls for all combinations of dilution/variant (vertical) and repeat/operator/lot (horizontal). Blue rectangles represent mutations that were detected and grey represents those missed. Panel E shows for SNVs the estimated allele fraction compared between InVisionFirst (blue box-plots) and the reference as estimated by Horizon using ddPCR (red crosses).</p
    corecore