5,862 research outputs found
New Variants of Pattern Matching with Constants and Variables
Given a text and a pattern over two types of symbols called constants and
variables, the parameterized pattern matching problem is to find all
occurrences of substrings of the text that the pattern matches by substituting
a variable in the text for each variable in the pattern, where the substitution
should be injective. The function matching problem is a variant of it that
lifts the injection constraint. In this paper, we discuss variants of those
problems, where one can substitute a constant or a variable for each variable
of the pattern. We give two kinds of algorithms for both problems, a
convolution-based method and an extended KMP-based method, and analyze their
complexity.Comment: 15 pages, 2 figure
Traveling waves in a coarse-grained model of volume-filling cell invasion: Simulations and comparisons
Many reaction-diffusion models produce traveling wave solutions that can be interpreted as waves of invasion in biological scenarios such as wound healing or tumor growth. These partial differential equation models have since been adapted to describe the interactions between cells and extracellular matrix (ECM), using a variety of different underlying assumptions. In this work, we derive a system of reaction-diffusion equations, with cross-species density-dependent diffusion, by coarse-graining an agent-based, volume-filling model of cell invasion into ECM. We study the resulting traveling wave solutions both numerically and analytically across various parameter regimes. Subsequently, we perform a systematic comparison between the behaviors observed in this model and those predicted by simpler models in the literature that do not take into account volume-filling effects in the same way. Our study justifies the use of some of these simpler, more analytically tractable models in reproducing the qualitative properties of the solutions in some parameter regimes, but it also reveals some interesting properties arising from the introduction of cell and ECM volume-filling effects, where standard model simplifications might not be appropriate
Simple non-mydriatic retinal photography is feasible and demonstrates retinal microvascular dilation in Chronic Obstructive Pulmonary Disease (COPD).
BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is associated with an increased risk of myocardial infarction and stroke but it remains unclear how to identify microvascular changes in this population. OBJECTIVES: We hypothesized that simple non-mydriatic retinal photography is feasible and can be used to assess microvascular damage in COPD. METHODS: Novel Vascular Manifestations of COPD was a prospective study comparing smokers with and without COPD, matched for age. Non-mydriatic, retinal fundus photographs were assessed using semi-automated software. RESULTS: Retinal images from 24 COPD and 22 control participants were compared. Cases were of similar age to controls (65.2 vs. 63.1 years, p = 0.38), had significantly lower Forced Expiratory Volume in one second (FEV1) (53.4 vs 100.1% predicted; p < 0.001) and smoked more than controls (41.7 vs. 29.6 pack years; p = 0.04). COPD participants had wider mean arteriolar (155.6 ±15 uM vs. controls [142.2 ± 12 uM]; p = 0.002) and venular diameters (216.8 ±20.7 uM vs. [201.3± 19.1 uM]; p = 0.012). Differences in retinal vessel caliber were independent of confounders, odds ratios (OR) = 1.08 (95% confidence intervals [CI] = 1.02, 1.13; p = 0.007) and OR = 1.05 (CI = 1.01, 1.09; p = 0.011) per uM increase in arteriolar and venular diameter respectively. FEV1 remained significantly associated with retinal vessel dilatation r = -0.39 (p = 0.02). CONCLUSIONS: Non-mydriatic retinal imaging is easily facilitated. We found significant arteriole and venous dilation in COPD compared to age-matched smokers without COPD associated with lung function independent of standard cardiovascular risk factors. Retinal microvascular changes are known to be strongly associated with future vascular events and retinal photography offers potential to identify this risk. TRIAL REGISTRATION: clinicaltrials.gov NCT02060292
Neural crest migration is driven by a few trailblazer cells with a unique molecular signature narrowly confined to the invasive front
Neural crest (NC) cell migration is crucial to the formation of peripheral tissues during vertebrate development. However, how NC cells respond to different microenvironments to maintain persistence of direction and cohesion in multicellular streams remains unclear. To address this, we profiled eight subregions of a typical cranial NC cell migratory stream. Hierarchical clustering showed significant differences in the expression profiles of the lead three subregions compared with newly emerged cells. Multiplexed imaging of mRNA expression using fluorescent hybridization chain reaction (HCR) quantitatively confirmed the expression profiles of lead cells. Computational modeling predicted that a small fraction of lead cells that detect directional information is optimal for successful stream migration. Single-cell profiling then revealed a unique molecular signature that is consistent and stable over time in a subset of lead cells within the most advanced portion of the migratory front, which we term trailblazers. Model simulations that forced a lead cell behavior in the trailing subpopulation predicted cell bunching near the migratory domain entrance. Misexpression of the trailblazer molecular signature by perturbation of two upstream transcription factors agreed with the in silico prediction and showed alterations to NC cell migration distance and stream shape. These data are the first to characterize the molecular diversity within an NC cell migratory stream and offer insights into how molecular patterns are transduced into cell behaviors
1H, 13C, and 15N resonance assignments for the tandem PHD finger motifs of human CHD4
The plant homeodomain (PHD) zinc finger is a structural motif of about 40–60 amino acid residues found in many eukaryotic proteins that are involved in chromatin-mediated gene regulation. The human chromodomain helicase DNA binding protein 4 (CHD4) is a multi-domain protein that harbours, at its N-terminal end, a pair of PHD finger motifs (dPHD) connected by a ~30 amino acid linker. This tandem PHD motif is thought to be involved in targeting CHD4 to chromatin via its interaction with histone tails. Here we report the 1H, 13C and 15N backbone and side-chain resonance assignment of the entire dPHD by heteronuclear multidimensional NMR spectroscopy. These assignments provide the starting point for the determination of the structure, dynamics and histone-binding properties of this tandem domain pair
Modelling Oscillator synchronisation during vertebrate axis segmentation
he somitogenesis clock regulates the periodicity with which somites form in the posterior pre-somitic mesoderm. Whilst cell heterogeneity results in noisy oscillation rates amongst constituent cells, synchrony within the population is maintained as oscillators are entrained via juxtracine signalling mechanisms. Here we consider a population of phase-coupled oscillators and investigate how biologically motivated perturbations to the entrained state can perturb synchrony within the population. We find that the ratio of mitosis length to clock period can influence levels of desynchronisation. Moreover, we observe that random cell movement, and hence change of local neighbourhoods, increases synchronisation
Second chances: Investigating athletes’ experiences of talent transfer
Talent transfer initiatives seek to transfer talented, mature individuals from one sport to another. Unfortunately talent transfer initiatives seem to lack an evidence-based direction and a rigorous exploration of the mechanisms underpinning the approach. The purpose of this exploratory study was to identify the factors which successfully transferring athletes cite as facilitative of talent transfer. In contrast to the anthropometric and performance variables that underpin current talent transfer initiatives, participants identified a range of psychobehavioral and environmental factors as key to successful transfer. We argue that further research into the mechanisms of talent transfer is needed in order to provide a strong evidence base for the methodologies employed in these initiatives
Firms' Main Market, Human Capital and Wages
Recent international trade literature emphasizes two features in characterizing the current patterns of trade: efficiency heterogeneity at the firm level and quality differentiation. This paper explores human capital and wage differences across firms in that context. We build a partial equilibrium model predicting that firms selling in more-remote markets employ higher human capital and pay higher wages to employees within each education group. The channel linking these variables is firms’ endogenous choice of quality. Predictions are tested using Spanish employer-employee matched data that classify firms according to four main destination markets: local, national, European Union, and rest of the World. Employees’ average education is increasing in the remoteness of firm’s main output market. Market–destination wage premia are large, increasing in the remoteness of the market, and increasing in individual education. These results suggest that increasing globalization may play a significant role in raising wage inequality within and across education groups
Ethical issues in implementation research: a discussion of the problems in achieving informed consent
Background: Improved quality of care is a policy objective of health care systems around the world. Implementation research is the scientific study of methods to promote the systematic uptake of clinical research findings into routine clinical practice, and hence to reduce inappropriate
care. It includes the study of influences on healthcare professionals' behaviour and methods to enable them to use research findings more effectively. Cluster randomized trials represent the optimal design for evaluating the effectiveness of implementation strategies. Various codes of
medical ethics, such as the Nuremberg Code and the Declaration of Helsinki inform medical research, but their relevance to cluster randomised trials in implementation research is unclear. This paper discusses the applicability of various ethical codes to obtaining consent in cluster trials in implementation research.
Discussion: The appropriate application of biomedical codes to implementation research is not obvious. Discussion of the nature and practice of informed consent in implementation research cluster trials must consider the levels at which consent can be sought, and for what purpose it can be sought. The level at which an intervention is delivered can render the idea of patient level
consent meaningless. Careful consideration of the ownership of information, and rights of access to and exploitation of data is required. For health care professionals and organizations, there is a balance between clinical freedom and responsibility to participate in research.
Summary: While ethical justification for clinical trials relies heavily on individual consent, for
implementation research aspects of distributive justice, economics, and political philosophy underlie the debate. Societies may need to trade off decisions on the choice between individualized consent and valid implementation research. We suggest that social sciences codes could usefully inform the consideration of implementation research by members of Research Ethics Committees
- …