64,875 research outputs found
Boron-10 loaded inorganic shielding material
Shielding material containing Boron 10 and gadoliunium for neutron absorption has been developed to reduce interference from low energy neutrons in measurement of fission neutron spectrum using Li-6 fast neutron spectrometer
Bidirectional torque filter eliminates backlash
Two elastic springs connecting a hub and two spur gears absorb bidirectional step torque differentials and provide antibacklash characteristics between input and output shafts. This device is used in precise control systems
Bidirectional step torque filter with zero backlash characteristic Patent
Gearing system for eliminating backlash and filtering input torque fluctuations from high inertia loa
A star camera aspect system suitable for use in balloon experiments
A balloon-borne experiment containing a star camera aspect system was designed, built, and flown. This system was designed to provide offset corrections to the magnetometer and inclinometer readings used to control an azimuth and elevation pointed experiment. The camera is controlled by a microprocessor, including commendable exposure and noise rejection threshold, as well as formatting the data for telemetry to the ground. As a background program, the microprocessor runs the aspect program to analyze a fraction of the pictures taken so that aspect information and offset corrections are available to the experiment in near real time. The analysis consists of pattern recognition of the star field with a star catalog in ROM memory and a least squares calculation. The performance of this system in ground based tests is described. It is part of the NASA/GSFC High Energy Gamma-Ray Balloon Instrument (2)
Ship and satellite bio-optical research in the California Bight
Mesoscale biological patterns and processes in productive coastal waters were studied. The physical and biological processes leading to chlorophyll variability were investigated. The ecological and evolutionary significance of this variability, and its relation to the prediction of fish recruitment and marine mammal distributions was studied. Seasonal primary productivity (using chlorophyll as an indication of phytoplankton biomass) for the entire Southern California Bight region was assessed. Complementary and contemporaneous ship and satellite (Nimbus 7-CZCS) bio-optical data from the Southern California Bight and surrounding waters were obtained and analyzed. These data were also utilized for the development of multi-platform sampling strategies and the optimization of algorithms for the estimation of phytoplankton biomass and primary production from satellite imagery
Distinguishing graded & ultrasensitive signalling cascade kinetics by the shape of morphogen gradients in Drosophila
Recently, signalling gradients in cascades of two-state reaction–diffusion systems were described as a model for understanding key biochemical mechanisms that underlie development and differentiation processes in the Drosophila embryo. Diffusion-trapping at the exterior of the cell membrane triggers the mitogen-activated protein kinase (MAPK) cascade to relay an appropriate signal from the membrane to the inner part of the cytosol, whereupon another diffusion-trapping mechanism involving the nucleus reads out this signal to trigger appropriate changes in gene expression. Proposed mathematical models exhibit equilibrium distributions consistent with experimental measurements of key spatial gradients in these processes. A significant property of the formulation is that the signal is assumed to be relayed from one system to the next in a linear fashion. However, the MAPK cascade often exhibits nonlinear dose–response properties and the final remark of Berezhkovskii et al. (2009) is that this assumption remains an important property to be tested experimentally, perhaps via a new quantitative assay across multiple genetic backgrounds. In anticipation of the need to be able to sensibly interpret data from such experiments, here we provide a complementary analysis that recovers existing formulae as a special case but is also capable of handling nonlinear functional forms. Predictions of linear and nonlinear signal relays and, in particular, graded and ultrasensitive MAPK kinetics, are compared
A hydrogeomorphic approach to evaluating flood potential in central Texas from orbital and suborbital remote sensing imagery
There are no author-identified significant results in this report
Fast-neutron spectrometer developments
Li6 sandwich-type neutron spectrometer is equipped with proportional counter for particle identification. System uses current-sensitive preamplifiers to minimize pile-up of gamma-ray and particle pulses
Structure of a linear array of hollow vortices of finite cross-section
Free-streamline theory is employed to construct an exact steady solution for a linear array of hollow, or stagnant cored, vortices in an inviscid incompressible fluid. If each vortex has area A and the separation is L, there are two possible shapes if A[1/2]/L is less than a critical value 0.38 and none if it is larger. The stability of the shapes to two-dimensional, periodic and symmetric disturbances is considered for hollow vortices. The more deformed of the two possible shapes is found to be unstable while the less deformed shape is stable
Models of collective cell spreading with variable cell aspect ration: a motivation for degenerate diffusion models
Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multiscale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (PME). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the PME to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models
- …