research

Structure of a linear array of hollow vortices of finite cross-section

Abstract

Free-streamline theory is employed to construct an exact steady solution for a linear array of hollow, or stagnant cored, vortices in an inviscid incompressible fluid. If each vortex has area A and the separation is L, there are two possible shapes if A[1/2]/L is less than a critical value 0.38 and none if it is larger. The stability of the shapes to two-dimensional, periodic and symmetric disturbances is considered for hollow vortices. The more deformed of the two possible shapes is found to be unstable while the less deformed shape is stable

    Similar works