34,852 research outputs found

    Mode-selective toroidal mirrors for unstable resonator planar waveguide and thin slab solid-state lasers

    Get PDF

    The mass of the black hole in LMC X-3

    Get PDF
    New high resolution, optical spectroscopy of the high mass X-ray binary LMC X-3, shows the spectral type of the donor star changes with phase due to irradition by the X-ray source. We find the spectral type is likely to be B5V, and only appears as B3V when viewing the heated side of the donor. Combining our measurements with those previously published, and taking into account the effects of X-ray irradiation, results in a value for the donor star radial velocity semi-amplitude of Ko=256.7±4.9K_{o} = 256.7 \pm 4.9~km~s1^{-1}. We find the mass of the black hole lies in the range 9.5MMx13.6M9.5M_{\odot} \leq M_{\rm x} \leq 13.6M_{\odot}

    Two-dimensional magnetism in the pnictide superconductor parent material SrFeAsF probed by muon-spin relaxation

    Full text link
    We report muon-spin relaxation measurements on SrFeAsF, which is the parent compound of a newly discovered iron-arsenic-fluoride based series of superconducting materials. We find that this material has very similar magnetic properties to LaFeAsO, such as separated magnetic and structural transitions (TN = 120 K, Ts = 175 K), contrasting with SrFe2As2 where they are coincident. The muon oscillation frequencies fall away very sharply at TN, which suggests that the magnetic exchange between the layers is weaker than in comparable oxypnictide compounds. This is consistent with our specific heat measurements, which find that the entropy change S = 0.05 J/mol/K largely occurs at the structural transition and there is no anomaly at TN.Comment: 4 pages, 3 figure

    LISA Parameter Estimation using Numerical Merger Waveforms

    Get PDF
    Coalescing supermassive black holes are expected to provide the strongest sources for gravitational radiation detected by LISA. Recent advances in numerical relativity provide a detailed description of the waveforms of such signals. We present a preliminary study of LISA's sensitivity to waveform parameters using a hybrid numerical/analytic waveform describing the coalescence of two equal-mass, nonspinning black holes. The Synthetic LISA software package is used to simulate the instrument response and the Fisher information matrix method is used to estimate errors in the waveform parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of 10(exp 6) deg M solar mass at a redshift of z is approximately 1 were found to decrease by a factor of slightly more than two when the merger was included

    Seeking for toroidal event horizons from initially stationary BH configurations

    Full text link
    We construct and evolve non-rotating vacuum initial data with a ring singularity, based on a simple extension of the standard Brill-Lindquist multiple black-hole initial data, and search for event horizons with spatial slices that are toroidal when the ring radius is sufficiently large. While evolutions of the ring singularity are not numerically feasible for large radii, we find some evidence, based on configurations of multiple BHs arranged in a ring, that this configuration leads to singular limit where the horizon width has zero size, possibly indicating the presence of a naked singularity, when the radius of the ring is sufficiently large. This is in agreement with previous studies that have found that there is no apparent horizon surrounding the ring singularity when the ring's radius is larger than about twice its mass.Comment: 24 pages, 14 figure

    Gamma-ray halos as a measure of intergalactic magnetic fields: a classical moment problem

    Full text link
    The presence of weak intergalactic magnetic fields can be studied by their effect on electro-magnetic cascades induced by multi-TeV gamma-rays in the cosmic radiation background. Small deflections of secondary electrons and positrons as the cascade develops extend the apparent size of the emission region of distant TeV gamma-ray sources. These gamma-ray halos can be resolvable in imaging atmospheric Cherenkov telescopes and serve as a measure of the intergalactic magnetic field strength and coherence length. We present a method of calculating the gamma-ray halo for isotropically emitting sources by treating magnetic deflections in the cascade as a diffusion process. With this ansatz the moments of the halo follow from a set of simple diffusion-cascade equations. The reconstruction of the angular distribution is then equivalent to a classical moment problem. We present a simple solution using Pade approximations of the moment's generating function.Comment: 12 pages, 6 figure

    Accidents that were Fatal on Ohio Farms or to Farm People, 1945

    Get PDF
    corecore