
LISA Parameter Estimation Using Numerical

Merger Waveforms

J.I. Thorpe, S.T. McWilliams, B.J. Kelley, R.P. Fahey, K.

Arnaud, and J.G. Baker

NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771,

USA

E-mail: James.I.Thorpe@nasa.gov

Abstract. Coalescing supermassive black holes are expected to provide the strongest

sources for gravitational radiation detected by LISA. Recent advances in numerical

relativity provide a detailed description of the waveforms of such signals. We

present a preliminary study of LISA’s sensitivity to waveform parameters using a

hybrid numerical/analytic waveform describing the coalescence of two equal-mass, non-

spinning black holes. The Synthetic LISA software package is used to simulate the

instrument response and the Fisher information matrix method is used to estimate

errors in the waveform parameters. Initial results indicate that inclusion of the

merger signal can significantly improve the precision of some parameter estimates. For

example, the median parameter errors for an ensemble of systems with total redshifted

mass of 106 M⊙ at a redshift of z ∼ 1 were found to decrease by a factor of slightly

more than two when the merger was included.

1. Introduction

The inspiral and merger of massive black hole binaries (MBHBs) are expected to produce

the strongest gravitational wave (GW) signals in the LISA frequency band[1]. The large

signal-to-noise ratios (SNRs) of these signals will allow LISA to move beyond the simple

detection of GWs into the rich field of parameter estimation. By extracting parameters

such as mass, mass ratio, spins, luminosity distance, and location LISA will provide

information that will shed light on a wealth of astrophysical questions. Examples include

testing models of hierarchical structure formation through MBHB merger trees[2] and,

if electromagnetic counterparts to MBHB mergers can be found, constraining cosmology

through direct measurements of the distance-redshift relationship at high redshifts[3].

Estimates of the accuracy of LISA’s extracted parameters have been developing

for the past several years. Much of this work has paralleled progress in describing

the waveforms from MBHBs. Initial studies focused on equal-mass, non-spinning

holes[4], while later analyses have added the effects of spin[5, 6] and higher harmonics[7].

One things all of these works have in common is that they do not include the final

merger/ringdown portion of the MBHB waveform. This is in part due to expectation
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that LISA’s sensitivity to certain parameters arises from modulations caused by the

orbit of the constellation and that the merger signals, while strong, are too short-lived

to experience any such modulations. The other, more practical reason why the merger

has been excluded is that the post-Newtonian (PN) approximations used to compute

the waveforms break down at or near the merger and do not give an accurate description

of the waveform.

Numerical relativity (NR) has now answered the question of what the merger

portion of the waveform looks like[8, 9], at least for a restricted set of parameters.

Analyses using hybrid PN/NR waveforms confirm that the merger portion of the signal

often dominates the total SNR of a LISA MBHB observation[10]. However, an increase

in SNR does not necessarily result in an increase in parameter sensitivity. In particular,

the classic mechanism of orbit-induced modulations should play a limited role for merger

signals. There may, however, be other ways in which the merger can contribute. In

this paper we present an initial study of LISA parameter estimation using complete

waveforms for equal-mass, non-spinning MBHBs.

The remainder of the paper is organized as follows. In section 2, we describe the

method used to perform the sensitivity calculation, including details on the waveform

(2.1), the instrument model (2.2), and the parameter sensitivity computation (2.3). In

section 3 we present results of our calculation for two ensembles of systems with different

mass ranges. In section 4 we compare our results with those of previous estimates and

discuss their implications.

2. Methodology

2.1. Waveform

The waveform used in these parameter estimation studies is a hybrid of PN and NR

waveforms as described in section IV of Baker, et al.[10]. The merger and ring-down

portions are simulated numerically using the moving-puncture method with radiation

extracted as amplitudes of spin-weighted spherical harmonics at fixed extraction radii.

In this work we consider only equal-mass, non-spinning MBHBs and retain only the

quadrupolar (l = |m| = 2) modes on grounds of symmetry. The numerical simulation

begins approximately 1200Mrest before merger, where Mrest is the total mass of the

system in the rest frame prior to radiation losses. This corresponds to approximately

seven orbits prior to merger. Early parts of the signal, beginning approximately

2 × 105Mrest before merger, are modeled using a PN waveform with a 3.5PN order

in phase and a 2.5PN order in amplitude. The two waveforms are matched at the point

where the estimated accuracy of the numerical simulation first surpasses the estimated

accuracy of the PN waveform, in this case at a time of 328Mrest before merger. The

sampling cadence of the hybrid waveform is 1Mrest.

Since the hybrid waveform relies on numerical simulations to generate the merger

segment it is not practical to use this technique to generate the large sets of waveforms
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with varying parameters that are needed for data analysis. If, however, we restrict

ourselves to variations in extrinsic parameters only, it is possible to use a single “master”

waveform and vary the extrinsic parameters using analytic formulae.

For our purposes, the desired waveforms are dimensionless strain in the Solar

System Barycenter (SSB). These depend on six extrinsic parameters: the redshifted

total system mass M = Mrest(1 + z), luminosity distance DL, coalescence time tc, and

three angles describing the orientation of the binary, in this case an inclination ι, initial

orbital phase φo, and a polarization ψ. If we define a “complex” strain h̃ ≡ h+ + ih×, we

can use the following relationship between the strain in the source frame, h̃source, and

the strain in the SSB, h̃SSB:

h̃SSB =

√

5

4π

G

c2
M

DL

eiψ
[

h̃source cos4
( ι

2

)

e2iφo + h̃∗source sin4
( ι

2

)

e−2iφo

]

(1)

Two additional extrinsic parameters describe the sky location of the binary in the

SSB frame. In this case we use galactic longitude Φ and latitude Θ. The effect of

these parameters of the waveform is handled by the instrument model, described in

the next section. In total, there are eight extrinsic parameters which determine the

SSB waveform from the master source waveform. For convenience, we use the vector
~λ ≡ (M,DL,Θ,Φ, ι, φo, ψ, tc) to denote the extrinsic parameters of a particular system

and use the shorthand notation h̃ = h̃(~λ) to represent the transformation in (1) .

2.2. Instrument Model

There are two necessary components for modeling the sensitivity of a gravitational wave

detector[11]: a response function relating the gravitational wave signal to the instrument

output and a noise model describing all other components of the instrument output.

In the case of LISA, the instrument outputs are the Time Delay Interferometry[12]

(TDI) streams. TDI is a technique by which the differential phase measurements made

at each spacecraft are combined with appropriate time delays in order to form outputs

for which laser phase noise is canceled but GW signals remain. Many variants of TDI

have been described in the literature[13]. For data analysis purposes, it is convinient

to use a set of “optimal” TDI channels[14] that form an orthongonal basis in the TDI

signal space. Such a set of channels has the property that the noises in the channels are

independent and each channel can therefore be treated as a separate detector. Prince,

et al.[14] defined a set of optimal TDI channels, (A,E, T ) which were formed from the

so-called TDI “generators”, (α, β, γ). We have selected a modified version of (A,E, T )

based on the first-generation Michelson TDI variables (X, Y, Z):

A′ =
1

2

1√
2
(Z −X),

E ′ =
1

2

1√
6
(Z +X − 2 · Y ),

T ′ =
1

2

1√
3
(Z +X + Y ). (2)
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The pre-factor of 1/2 is chosen so that (A′, E ′, T ′) reduce to (A,E, T ) in the low

frequency limit. For brevity, we will denote the set of three modified optical channels

by the vector A ≡ (A′, E ′, T ′).

2.2.1. Response to Signals The response function of a particular TDI channel depends

on the detector geometry and its orientation relative to the source. These quantities

evolve as the LISA constellation orbits the Sun, causing modulations in the response

which provide a potential mechanism for discerning source parameters such as sky

position. For GW frequencies below about 5 mHz, corresponding to wavelengths larger

than the size of the detector, it is possible to factor out a fixed detector response from

the orbital modulation, which can then be treated analytically[4]. When higher GW

frequencies are of interest, which will generally be the case when the merger and/or

higher harmonics are included, the effect of the evolving detector geometry will become

important.

For this work, we have chosen to use the Synthetic LISA software package[15] to

model the instrument response to the GW signal. Synthetic LISA models the orbits of

the individual spacecraft and computes the constellation geometry. The GW response

in each arm is then computed and assembled to form the appropriate TDI combinations.

2.2.2. Response to Noise It would of course be possible to use Synthetic LISA to

compute the noise output in the A channels as well as the signal response. Simulated

noise with appropriate spectral and statistical properties would be injected at each

measurement point and propagated just as the GW signal response is. The difficulty

with this approach is that statistical variations cause the noise curve to change from one

run to the next, washing out the subtle changes corresponding to variations in waveform

parameters. This effect can be mitigated by averaging repeated simulations with varying

seeds, however this adds computational cost to the instrument model.

The alternative approach, the one taken by most estimates of LISA sensitivity in

the literature, is to derive an analytic expression for the average noise level in a TDI

channel given the noise spectra of the individual components[13]. For A, the one-sided

power-spectral densities (PSDs) of the noise are given by the following expressions

SA′ = SE′ = 2 sin2 (2πfL/c) · {2 · [3 + 2 cos (2πfL/c) + cos (4πfL/c)]Spm(f)

+ [2 + cos (2πfL/c)]Sop(f)}
ST ′ = 8 sin2 (2πfL/c) · sin2 (πfL/c) ·

[

4 sin2 (πfL/c)Spm(f) + Sop(f)
]

(3)

where L is the average arm length of the constellation, f is the Fourier frequency, and

Spm(f) and Sop(f) are the strain-equivalent proof-mass acceleration and optical-path

noises of the LISA links respectively. For this work, the following expressions were used

to describe Spm(f) and Sop(f),

Spm(f) =
(

2.5 × 10−48
)

(f/1 Hz)−2 ·
√

1 + (f/0.1 mHz)−4

Sop(f) = 1.8 × 10−37 (f/1 Hz)2 . (4)
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In addition to the noise introduced by the instrument, MBHB signals are also

partially obscured by a “foreground” of other GW signals. This foreground is composed

of a superposition of tens of thousands of compact binaries in our galaxy and its

neighborhood. Using the expression for displacement noise derived by Timpano, Rubbo,

and Cornish[16], the noise contribution in the Michelson (X, Y, Z) TDI channels of this

stochastic foreground can be estimated as

Sgal(f) =

[

8πLf

c
sin

(

2πLf

c

)]2

·G(f) (5)

G(f) ≡



















10−44.62(f/1 Hz)−2.3, 10µHz ≤ f < 1 mHz

10−50.92(f/1 Hz)−4.4, 1 mHz ≤ f < 2 mHz

10−62.8(f/1 Hz)−8.8, 1 mHz ≤ f < 4 mHz

10−89.68(f/1 Hz)−20, 4 Hz ≤ f < 10 mHz

(6)

In this work we have made the assumption that Sgal(f) enters the A′ and E ′ channels

with the same transfer function as the (X, Y, Z) channels and that it is not present in

the T
′

channel. The total instrument noise in the A channels is given by the expressions

in (3) with the component noises in (4) and the galactic foreground noise in (5) added

to the A′ and E ′ channels.

2.2.3. Hazards of Hybrid Instrument Models Combining a numerical instrument

response model with an analytic noise model must be done with some care in order

to avoid certain hazards. Consider computing the SNR of a particular GW signal using

Synthetic LISA to estimate the detector response and the analytic formulas in (3) to

compute the noise. The analytic formulas predict that the noise will go to zero at the

null frequencies fn = nc/L, where n = 1, 2, 3.... This perfect cancellation only occurs

because the arm lengths are exactly equal and are static. Were such a model used to

compute the signal response, it too would go to zero for f = fn. However, when Synthetic

LISA computes the signal response, the cancellation is not perfect and some signal is still

present at f = fn. This results in an infinite contribution to the SNR at f = fn. Even

if Synthetic LISA is modified to use an equal-arm rigid detector, the power-spectrum of

the signal must still be estimated from the discrete time series, an imperfect process in

which power in neighboring bins can leak into the bins corresponding to f = fn, again

leading to infinite SNR. To alleviate this problem, we added an artificial “floor” to each

of the noise spectra in (3) of 10−40(f/1 Hz)2.

The T ′ channel has a related problem at low frequencies, where the expression in (3)

can be reduced to ST ′(f) ≈ (6.60×10−44)(f/1 Hz)2 assuming the noise levels in (4). The

corresponding signal response function should also fall off with f 2 at low frequencies in

order for SNR to converge. In practice, the T ′ channel response for our signals leveled off

at a finite value. This caused an erroneous increase in SNR (and parameter sensitivity)

from the low-frequency portion of the T ′ channel. The exact reason for this flooring

behavior is not clear, it may be due to asymmetries in or motion of the constellation

or simply from errors in the estimation of signal power spectra. It may be possible to
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address the problem with the T ′ channel by adding an artificial noise floor to ST ′(f) or

by only using it in the high-frequency limit. For this work, however, we have chosen to

neglect the contributions of the T ′ channel until the issue can be further investigated.

2.3. Parameter Sensitivity Calculation

With the waveform described in 2.1 and the instrument model described in 2.2 in hand,

the next step is to develop a procedure for evaluating parameter sensitivity. Like many

others in the community, we have selected the Fisher information matrix approach

because of its relative simplicity and speed. The steps for the approach are as follows.

A SSB waveform with a particular set of extrinsic parameters ~λo is generated from the

master waveform,

h̃o = h̃
(

~λo

)

(7)

A set of perturbed waveforms is then generated by perturbing each of the parameters

individually,

h̃i = h̃(~λo + δλîi), (8)

where δλi is the size of the perturbation in the î parameter direction. The instrument

response to the original waveform and each of the perturbed waveforms is calculated

using Synthetic LISA. The partial derivative of the instrument response with respect to

each parameter is then estimated using a one-sided difference,

∂A

∂λi

∣

∣

∣

∣

~λ=~λo

≈ Ai −Ao

δλi
(9)

where Ao is the response to h̃o and Ai is the response to h̃i. These parameter derivatives

are used to estimate the Fisher information matrix

Γij =

(

∂A

∂λi
|∂A
∂λj

)

(10)

where (a|b) denotes the noise-weighted inner product,

(a|b) ≡ 2

∫ ∞

0

a⋆(f)b(f) + a(f)b⋆(f)

Sn(f)
df. (11)

The quantity Sn(f) is the PSD of the appropriate TDI channel, including the foreground

as described in (2.2.2). In our case we estimate the Fourier transform of ∂A/∂λi from

the time series using a discrete Fourier transform with tapering applied to the early

and late portion of the signal to reduce spectral artifacts. The inner product in (11) is

evaluated as a discrete sum with finite upper and lower integration limits.

Since the A channels are constructed to be linearly independent, it is appropriate

to sum their individual Fisher matrices to yield the effective Fisher matrix for the

instrument as a whole. However, as discussed in section 2.2.2, the T ′ channel was not

well-behaved in our instrument model. For that reason, we have omitted the T ′ channel

and defined the composite Fisher matrix as

Γij = Γ
(A′)
ij + Γ

(E′)
ij . (12)
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Table 1. Mean (∆̄λi) and median (∆̃λi) values for parameter errors and SNR for an

ensemble of 140 equal-mass, non-spinning binaries with M = 106 M⊙ at DL = 6 Gpc

(z ∼ 1). For the ’pre-ISCO’ case, the integration of Fisher matrix elements was cutoff

at a frequency corresponding to the Schwarzchild ISCO. The ’total’ case includes the

entire waveform.

λi ∆̄λi (total) ∆̄λi (pre-ISCO) ∆̃λi (total) ∆̃λi (pre-ISCO)

SNRAE 1.12 × 103 8.35 × 102 9.28 × 102 6.98 × 102

ln(M/M⊙) 2.35 × 10−6 4.00 × 10−6 1.66 × 10−6 3.26 × 10−6

ln(DL/1 pc) 3.78 × 10−1 6.07 × 10−1 4.48 × 10−2 1.18 × 10−1

Θ (deg) 3.84 7.19 2.15 5.28

Φ (deg) 17.7 26.9 4.64 9.19

ι (deg) 81.9 137 1.08 3.12

φo (deg) 607 1270 1.59 4.26

ψ (deg) 620 1290 7.46 15.9

tc(sec) 17.1 39.5 6.87 27.3

In the limit of large SNR, the covariance matrix is simply the inverse of the covariance

matrix. Using this limit, we estimate the covariance matrix Σij and parameter errors

∆λi in the standard fashion

Σij = (Γ−1)ij , (13)

∆λi =
√

Σii, (14)

These quantities are valid for a system with the particular set of parameters ~λo. It

is widely recognized that Σij can depend heavily on the particular choice of ~λo. To

explore this dependence, a Monte Carlo approach is taken whereby ~λo is varied and Σij

is computed for each system. This yields an estimate of the probability distribution

function for Σij and ∆λi.

3. Results

For our initial trials, we choose an ensemble of 140 systems, each with M = 106 M⊙ and

DL = 6 Gpc, corresponding to z ∼ 1 in standard Λ-CDM cosmology. The remaining

parameters (Θ, Φ, ι, φo, ψ, and tc) were randomly varied over the ensemble. For each

member of the ensemble, Γij and its descendants were computed using two different

upper frequency limits for the inner product in (11). In one case, the integral was

truncated at the Schwarzchild inner-most stable circular orbit (ISCO) frequency whereas

in the second case it was continued for an order of magnitude past the peak (merger)

frequency. The goal was to estimate the impact of the post-ISCO portions of the

waveform on parameter estimation. Table 1 lists the mean and median values of the

SNR and parameter errors for the ensemble. Histograms of each parameter error for

both cases are shown in Figure 1.
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Figure 1. Histograms for SNR and parameter errors for an ensemble of 140 equal-

mass, non-spinning binaries with M = 106 M⊙ at DL = 6 Gpc (z ∼ 1). For the

’pre-ISCO’ case, the integration of Fisher matrix elements was cutoff at a frequency

corresponding to the Schwarzchild ISCO. The ’total’ case includes the entire waveform.

For each of the parameters there is a clear reduction in error when the post-ISCO

portion of the waveform is included. The median improvement is about a factor of two,

with the exception of the coalescence time, which improves by a factor of roughly four.

In all cases, the improvement factor is greater than the median improvement in SNR of

∼25%, suggesting that most of the improvement is via a mechanism other than direct

increase in SNR.

One possible mechanism is that a pair of parameters that is nearly degenerate in

the inspiral phase become decoupled in the more complex merger phase of the waveform.

Table 2 lists the percentage decrease in covariance for each parameter pair from pre-

ISCO to total waveform. Note that all of the covariances decrease when the post-ISCO

waveform is added. Covariances with the coalescence time exhibit the most dramatic

decrease. This can be qualitatively explained by arguing that the merger provides a
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Table 2. Median percentage reduction in covariance from pre-ISCO to total signal,

1 − Σ
(total)
ij /Σ

(pre−ISCO)
ij .

lnM lnDL Θ Φ ι φo ψ tc

lnM 72.3 70.8 63.5 90.7 71.4 79.2 82.4 91.1

lnDL - 75.7 79.6 82.3 76.4 83.5 83.4 95.4

Θ - - 80.9 89.6 80.8 77.2 81.9 97.6

Φ - - - 82.9 83.1 80.8 81.8 87.2

ι - - - - 76.8 87.0 86.6 94.8

φo - - - - - 78.7 78.5 91.8

ψ - - - - - - 78.3 93.0

tc - - - - - - - 94.2

sharp feature that constrains the coalescence time more tightly and breaks degeneracies

with other parameters.

3.1. Evolution of Parameter Errors

The results in Table 1, Figure 1, and Table 2 demonstrate the improvement in parameter

estimation when the merger and ringdown portions of the waveform are included. A

related question is to ask how the parameter information accumulates with time. This

is of great interest to the problem of searching for electromagnetic (EM) counterparts

for MBHB mergers. If the EM counterpart is nearly simultaneous with the peak of the

GW signal and is short-lived, it is critical to have advance information as to the location

of the merger in order to assist the EM search.

Figure 2 shows the effect of varying the upper cutoff frequency of the inner product

in (11) on the SNR as well as the errors ∆DL, ∆Θ, and ∆Φ. From the an EM counterpart

search perspective, these (along with perhaps tc) are the most critical parameters. For

equal mass systems that are dominated by quadrupolar radiation, the upper cutoff

frequency is a reasonable proxy for time before merger. During the inspiral phase, the

two can be related using PN expressions[17]. Included on the plots in Figure 2 are points

corresponding to times one minute, one hour, one day, and one week before merger.

The evolution of parameter errors in Figure 1 demonstrate the importance of the

latter portions of the inspiral and the merger signal. The sky positions each improve

by more than an order of magnitude in the final day of the signal. For comparison,

Lang & Hughes[18] looked at spinning, precessing, unequal mass binaries in the post-

Newtonian regime and found that sky position error decreased by similar amount during

the final day before merger. Such behavior may influence the design of LISA mission

operations. If the final days and hours of a signal are the most important in terms

of source localization there will be pressure to reduce the latency between LISA and

electromagnetic observatories. This could effect decisions on data downlink operations,

inter-spacecraft communications, and other aspects of the mission.
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Figure 2. Effect of upper frequency cut on SNR and source location errors for an

ensemble of 140 equal-mass, non-spinning MBHBs with M = 106 M⊙ and DL = 6 Gpc.

The filled circles denote the median values while the shaded area gives the range of

the 20th to 80th percentile. The vertical dashed line denotes the Schwarzchild ISCO

frequency, 4.4 mHz for these parameters. The individual solid markers denote time

before merger.

3.2. Effect of Mass

As a test of the effect of total redshifted system mass on our parameter estimation

results, we repeated our Monte Carlo run using an ensemble of 140 equal-mass, non-

spinning MBHBs with M = 107 M⊙ and DL = 6 Gpc. Table 3 gives a summary of

the mean and median parameter errors for this run. Comparing with the analogous

ensemble of M = 106 M⊙ systems summarized in Table 1, the heavier systems generally

exhibit a reduced SNR and increased parameter errors. This is to be expected given the

fact that the GW signal is shifted to lower frequencies and consequently is more obscured

by the steeply-rising acceleration noise in the LISA detector. As with the M = 106 M⊙

systems, the reduction in parameter errors with the inclusion of the merger signal is still

present in the M = 107 M⊙ case.

4. Conclusion

The results in section 3 give an indication as to the effect of the merger portion of the

waveform on LISA’s ability to measure source parameters. Making a precise comparison
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Table 3. Mean (∆̄λi) and median (∆̃λi) values for parameter errors for an ensemble

of 140 equal-mass, non-spinning binaries with M = 107 M⊙ at DL = 6 Gpc (z ∼ 1).

For the ’pre-ISCO’ case, the integration of Fisher matrix elements was cutoff at a

frequency corresponding to the Schwarzchild ISCO. The ’total’ case includes the entire

waveform.

λi ∆̄λi (total) ∆̄λi (pre-ISCO) ∆̃λi (total) ∆̃λi (pre-ISCO)

SNRAE 98.5 26.8 85.2 22.9

ln(M/M⊙) 1.55 × 10−6 2.66 × 10−6 1.01 × 10−6 1.89 × 10−6

ln(DL/1 pc) 2.17 2.83 8.04 × 10−1 1.07

Θ (deg) 22.4 33.5 19.8 27.6

Φ (deg) 58.4 103 22.0 35.1

ι (deg) 9.65 25.2 5.88 × 10−1 1.40

φo (deg) 1.58 × 103 2.80 × 103 33.3 43.9

ψ (deg) 1.62 × 103 2.87 × 103 79.9 111

tc(sec) 14.7 77.2 13.1 68.5

with previous estimates is complicated by the fact that different physics is included

in the source waveforms and different sets of parameters are used to describe them.

Two of the most commonly-quoted parameters are the fractional luminosity distance

∆DL/DL ≈ ∆ ln(DL) and the solid angle subtended by the error ellipse, ∆ΩN . The

latter quantity can be computed (REF Lang & Hughes) from the sky position angles,

their errors, and their covariance.

In Table 4, ∆DL/DL and ∆ΩN from our ensemble of systems with M = 106 M⊙ at

z ≈ 1 are compared with results from prior published works. Aside from the differences

in the waveform physics (spin, merger, etc.), the biggest difference in the studies is that

the length of the waveforms in this work are a factor of ∼ 30 shorter than those used in

the other published works. This is primarily due to the computational effort required

to simulate long waveforms with Synthetic LISA.

The best comparison that can be made with this work is to compare the non-

spinning results of Cutler and of Vecchio to our pre-ISCO case. ∆DL/DL is a factor

of 2 ∼ 5 larger in our results than the published results. When the merger is added,

the three results for ∆DL/DL approximately agree. This suggests that observing the

final ∼ 10 days of a M = 106 M⊙ MBHB at z ∼ 1 will constrain DL equally as well as

observing the entire year prior to ISCO.

The results for ∆ΩN for the short waveforms are considerably worse. This

indicates that the modulation imposed by the LISA orbits plays an important role

in determining these parameters, a suggestion that agrees with the model proposed

by Cutler. Nevertheless, the improvement in ∆ΩN upon inclusion of the merger is a

factor of ∼ 5, roughly the same factor as the inclusion of spin precession. Whether

this same level of improvement will persist when the merger portion of the waveform

is combined with long-duration observations, spin, and precession will depend on the
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Table 4. Comparison of source location for equal-mass MBHBs at z ∼ 1 in this work

to prior published works.

M (106 M⊙) duration (yr) spin precession merger ∆ΩN (deg2) ∆DL/DL

Cutler[4] 4.0 1.0 no no no 4 × 10−1∗ 7 × 10−2∗

Vecchio[5] 4.0 1.0 no no no 6 × 10−1† 2 × 10−2†

Vecchio[5] 4.0 1.0 yes no no 3 × 10−1† 6 × 10−3†

Lang & Hughes[18] 1.2 ∼1.5 (avg) yes yes no 5.56 × 10−2 3.57 × 10−3

this work 1.0 0.03 no no no 5.08 × 101 1.18 × 10−1

this work 1.0 0.03 no no yes 1.13 × 101 4.48 × 10−2

∗Estimated from the results in Table II in [4]
†Estimated from histograms in FIG. 2 in [5]

exact mechanism by which the improvement arises. If both improvements result from

breaking the same parameter degeneracy, then the improvements will add rather than

multiply. In other words, you can’t break the same degeneracy twice. If however, the

mechanisms for improvement are different, it is possible that the relative improvement

when including the merger will be similar to the case here.

In summary we have found that inclusion of the merger signal in equal-mass, non-

spinning MBHB waveforms can reduce errors in LISA parameter estimation by factors

of a few over analyses that include the merger only. We expect that this improvement

will persist as other effects such as unequal masses, spins, and higher harmonics are

included.
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