1,521 research outputs found

    Total Value of Phosphorus Recovery

    Get PDF
    Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies

    Biomonitoring of 2,4-Dichlorophenoxyacetic Acid Exposure and Dose in Farm Families

    Get PDF
    OBJECTIVE: We estimated 2,4-dichlorophenoxyacetic acid (2,4-D) exposure and systemic dose in farm family members following an application of 2,4-D on their farm. METHODS: Farm families were recruited from licensed applicators in Minnesota and South Carolina. Eligible family members collected all urine during five 24-hr intervals, 1 day before through 3 days after an application of 2,4-D. Exposure profiles were characterized with 24-hr urine 2,4-D concentrations, which then were related to potential predictors of exposure. Systemic dose was estimated using the urine collections from the application day through the third day after application. RESULTS: Median urine 2,4-D concentrations at baseline and day after application were 2.1 and 73.1 μ g/L for applicators, below the limit of detection, and 1.2 μ g/L for spouses, and 1.5 and 2.9 μ g/L for children. The younger children (4–11 years of age) had higher median post-application concentrations than the older children (≥ 12 years of age) (6.5 vs. 1.9 μ g/L). The geometric mean systemic doses (micrograms per kilogram body weight) were 2.46 (applicators), 0.8 (spouses), 0.22 (all children), 0.32 (children 4–11 years of age), and 0.12 (children ≥ 12 years of age). Exposure to the spouses and children was primarily determined by direct contact with the application process and the number of acres treated. Multivariate models identified glove use, repairing equipment, and number of acres treated as predictors of exposure in the applicators. CONCLUSIONS: We observed considerable heterogeneity of 2,4-D exposure among farm family members, primarily attributable to level of contact with the application process. Awareness of this variability and the actual magnitude of exposures are important for developing exposure and risk characterizations in 2,4-D–exposed agricultural populations

    An argument for pandemic risk management using a multidisciplinary One Health approach to governance: an Australian case study

    Get PDF
    The emergence of SARS-CoV-2 and the subsequent COVID-19 pandemic has resulted in significant global impact. However, COVID-19 is just one of several high-impact infectious diseases that emerged from wildlife and are linked to the human relationship with nature. The rate of emergence of new zoonoses (diseases of animal origin) is increasing, driven by human-induced environmental changes that threaten biodiversity on a global scale. This increase is directly linked to environmental drivers including biodiversity loss, climate change and unsustainable resource extraction. Australia is a biodiversity hotspot and is subject to sustained and significant environmental change, increasing the risk of it being a location for pandemic origin. Moreover, the global integration of markets means that consumption trends in Australia contributes to the risk of disease spill-over in our regional neighbours in Asia-Pacific, and beyond. Despite the clear causal link between anthropogenic pressures on the environment and increasing pandemic risks, Australia’s response to the COVID-19 pandemic, like most of the world, has centred largely on public health strategies, with a clear focus on reactive management. Yet, the span of expertise and evidence relevant to the governance of pandemic risk management is much wider than public health and epidemiology. It involves animal/wildlife health, biosecurity, conservation sciences, social sciences, behavioural psychology, law, policy and economic analyses to name just a few. The authors are a team of multidisciplinary practitioners and researchers who have worked together to analyse, synthesise, and harmonise the links between pandemic risk management approaches and issues in different disciplines to provide a holistic overview of current practice, and conclude the need for reform in Australia. We discuss the adoption of a comprehensive and interdisciplinary ‘One Health’ approach to pandemic risk management in Australia. A key goal of the One Health approach is to be proactive in countering threats of emerging infectious diseases and zoonoses through a recognition of the interdependence between human, animal, and environmental health. Developing ways to implement a One Health approach to pandemic prevention would not only reduce the risk of future pandemics emerging in or entering Australia, but also provide a model for prevention strategies around the world

    Benefits of robotic cystectomy with intracorporeal diversion for patients with low cardiorespiratory fitness: A prospective cohort study

    Get PDF
    BACKGROUND: Patients undergoing radical cystectomy have associated comorbidities resulting in reduced cardiorespiratory fitness. Preoperative cardiopulmonary exercise testing (CPET) measures including anaerobic threshold (AT) can predict major adverse events (MAE) and hospital length of stay (LOS) for patients undergoing open and robotic cystectomy with extracorporeal diversion. Our objective was to determine the relationship between CPET measures and outcome in patients undergoing robotic radical cystectomy and intracorporeal diversion (intracorporeal robotic assisted radical cystectomy [iRARC]). METHODS: A single institution prospective cohort study in patients undergoing iRARC for muscle invasive and high-grade bladder cancer. Inclusion: patients undergoing standardised CPET before iRARC. Exclusions: patients not consenting to data collection. Data on CPET measures (AT, ventilatory equivalent for carbon dioxide [VE/VCO2] at AT, peak oxygen uptake [VO2]), and patient demographics prospectively collected. Outcome measurements included hospital LOS; 30-day MAE and 90-day mortality data, which were prospectively recorded. Descriptive and regression analyses were used to assess whether CPET measures were associated with or predicted outcomes. RESULTS: From June 2011 to March 2015, 128 patients underwent radical cystectomy (open cystectomy, n = 17; iRARC, n = 111). A total of 82 patients who underwent iRARC and CPET and consented to participation were included. Median (interquartile range): age = 65 (58–73); body mass index = 27 (23–30); AT = 10.0 (9–11), Peak VO2 = 15.0 (13–18.5), VE/VCO2 (AT) = 33.0 (30–38). 30-day MAE = 14/111 (12.6%): death = 2, multiorgan failure = 2, abscess = 2, gastrointestinal = 2, renal = 6; 90-day mortality = 3/111 (2.7%). AT, peak VO2, and VE/VCO2 (at AT) were not significant predictors of 30-day MAE or LOS. The results are limited by the absence of control group undergoing open surgery. CONCLUSIONS: Poor cardiorespiratory fitness does not predict increased hospital LOS or MAEs in patients undergoing iRARC. Overall, MAE and LOS comparable with other series

    Baker Center Journal of Applied Public Policy, Vol. III No. I

    Get PDF
    Welcome to the third issue of the Baker Center Journal for Applied PublicPolicy. I am pleased that this issue, as its predecessors, evidences the vibrancy of the Baker Center’s governance and public policy programs and makes a contribution to our collective understanding about a variety of policy issues currently being discussed in America. Relating to our system of governance, Jess Hale Jr. examines a proposal for a uniform state approach to reining in renegade presidential electors and Professor Glenn Reynolds reviews Jack Goldsmith’s book The Terror Presidency: Law and Judgment Inside the Bush Administration. Relating to media and foreign affairs and the role of the media in political life, Dr. Mike Fitzgerald and two of his students provide us with “A Comparative Study of Images Created by Press Coverage of the United States and the Republic of Belarus.” Relating to health policy, Dr. David Mirvis, recently appointed as a Senior Fellow for Health Policy at the Center, explores the public policy implications of viewing health as an engine of economic growth. Relating to energy and environmental policy, Drs. Bruce Tonn and Amy Gibson and Baker Scholars Stephanie Smith and Rachel Tuck explore U.S. Attitudes and Perspectives on National Energy Policy. I am also very pleased that this issue includes a report of an excellent conference – “Formulation of a Bipartisan Energy and Climate Policy: Toward and Open and Transparent Process “- that was co-sponsored by the Baker Center and the Woodrow Wilson International Center for Scholars. This issue also includes the result ofanother successful collaboration between the Baker and Wilson Centers that focused on “Five Public Policy Ideas for Building Obama’s New Economy.” I look forward to further productive collaborations between the Baker and Wilson Centers. Relating to global security policy, this issue includes a Student Symposium onNational Security. Although the Baker Center Journal has provided an outlet for publication of student scholarship since its inception, I am particularly pleased that the student co-editors - Baker Scholars Elizabeth Wilson Vaughan and Bradford A. Vaughan - took the initiative to expand upon the efforts of their predecessors and to provide us with an expanded set of excellent students essays each of which addresses an important national security policy issue. It is an important part of the Baker Center’s mission to engage UTK students in the political and public policy process, and I applaud our student authors fortheir contributions to this symposium. I hope you find this issue of the Baker Center Journal for Applied Public Policy to be both interesting and thought-provoking and that it will encourage you to participate in America’s unique and wonderful political and policy processes

    Stability of a cubic fixed point in three dimensions. Critical exponents for generic N

    Full text link
    The detailed analysis of the global structure of the renormalization-group (RG) flow diagram for a model with isotropic and cubic interactions is carried out in the framework of the massive field theory directly in three dimensions (3D) within an assumption of isotropic exchange. Perturbative expansions for RG functions are calculated for arbitrary NN up to the four-loop order and resummed by means of the generalized Padeˊ\acute{\rm e}-Borel-Leroy technique. Coordinates and stability matrix eigenvalues for the cubic fixed point are found under the optimal value of the transformation parameter. Critical dimensionality of the model is proved to be equal to Nc=2.89±0.02N_c=2.89 \pm 0.02 that agrees well with the estimate obtained on the basis of the five-loop \ve-expansion [H. Kleinert and V. Schulte-Frohlinde, Phys. Lett. B342, 284 (1995)] resummed by the above method. As a consequence, the cubic fixed point should be stable in 3D for N3N\ge3, and the critical exponents controlling phase transitions in three-dimensional magnets should belong to the cubic universality class. The critical behavior of the random Ising model being the nontrivial particular case of the cubic model when N=0 is also investigated. For all physical quantities of interest the most accurate numerical estimates with their error bounds are obtained. The results achieved in the work are discussed along with the predictions given by other theoretical approaches and experimental data.Comment: 33 pages, LaTeX, 7 PostScript figures. Final version corrected and added with an Appendix on the six-loop stud

    Developing a strategy for the national coordinated soil moisture monitoring network

    Get PDF
    Soil moisture is a critical land surface variable, affecting a wide variety of climatological, agricultural, and hydrological processes. Determining the current soil moisture status is possible via a variety of methods, including in situ monitoring, remote sensing, and numerical modeling. Although all of these approaches are rapidly evolving, there is no cohesive strategy or framework to integrate these diverse information sources to develop and disseminate coordinated national soil moisture products that will improve our ability to understand climate variability. The National Coordinated Soil Moisture Monitoring Network initiative has developed a national strategy for network coordination with NOAA’s National Integrated Drought Information System. The strategy is currently in review within NOAA, and work is underway to implement the initial milestones of the strategy. This update reviews the goals and steps being taken to establish this national-scale coordination for soil moisture monitoring in the United States
    corecore