1,181 research outputs found

    Matching methods to produce maps for pest risk analysis to resources

    Get PDF
    Decision support systems (DSSs) for pest risk mapping are invaluable for guiding pest risk analysts seeking to add maps to pest risk analyses (PRAs). Maps can help identify the area of potential establishment, the area at highest risk and the endangered area for alien plant pests. However, the production of detailed pest risk maps may require considerable time and resources and it is important to match the methods employed to the priority, time and detail required. In this paper, we apply PRATIQUE DSSs to Phytophthora austrocedrae, a pathogen of the Cupressaceae, Thaumetopoea pityocampa, the pine processionary moth, Drosophila suzukii, spotted wing Drosophila, and Thaumatotibia leucotreta, the false codling moth. We demonstrate that complex pest risk maps are not always a high priority and suggest that simple methods may be used to determine the geographic variation in relative risks posed by invasive alien species within an area of concern

    Invasive alien species in the food chain : advancing risk assessment models to address climate change, economics and uncertainty

    Get PDF
    Economic globalization depends on the movement of people and goods between countries. As these exchanges increase, so does the potential for translocation of harmful pests, weeds, and pathogens capable of impacting our crops, livestock and natural resources (Hulme 2009), with concomitant impacts on global food security (Cook et al. 2011)

    Transcriptional regulators of arteriovenous identity in the developing mammalian embryo

    Get PDF
    The complex and hierarchical vascular network of arteries, veins, and capillaries features considerable endothelial heterogeneity, yet the regulatory pathways directing arteriovenous specification, differentiation, and identity are still not fully understood. Recent advances in analysis of endothelial-specific gene-regulatory elements, single-cell RNA sequencing, and cell lineage tracing have both emphasized the importance of transcriptional regulation in this process and shed considerable light on the mechanism and regulation of specification within the endothelium. In this review, we discuss recent advances in our understanding of how endothelial cells acquire arterial and venous identity and the role different transcription factors play in this process

    Application of a Novel Quantitative Tractography Based Analysis of Diffusion Tensor Imaging to Examine Fiber Bundle Length in Human Cerebral White Matter

    Get PDF
    This paper reviews basic methods and recent applications of length-based fiber bundle analysis of cerebral white matter using diffusion magnetic resonance imaging (dMRI). Diffusion weighted imaging (DWI) is a dMRI technique that uses the random motion of water to probe tissue microstructure in the brain. Diffusion tensor imaging (DTI) is an extension of DWI that measures the magnitude and direction of water diffusion in cerebral white matter, using either voxel-based scalar metrics or tractography-based analyses. More recently, quantitative tractography based on diffusion tensor imaging (qtDTI) technology has been developed to help quantify aggregate structural anatomical properties of white matter fiber bundles, including both scalar metrics of bundle diffusion and more complex morphometric properties, such as fiber bundle length (FBL). Unlike traditional scalar diffusion metrics, FBL reflects the direction and curvature of white matter pathways coursing through the brain and is sensitive to changes within the entire tractography model. In this paper, we discuss applications of this approach to date that have provided new insights into brain organization and function. We also discuss opportunities for improving the methodology through more complex anatomical models and potential areas of new application for qtDTI

    Topological organization of whole-brain white matter in HIV infection

    Get PDF
    Infection with human immunodeficiency virus (HIV) is associated with neuroimaging alterations. However, little is known about the topological organization of whole-brain networks and the corresponding association with cognition. As such, we examined structural whole-brain white matter connectivity patterns and cognitive performance in 29 HIV+ young adults (mean age = 25.9) with limited or no HIV treatment history. HIV+ participants and demographically similar HIV− controls (n = 16) residing in South Africa underwent magnetic resonance imaging (MRI) and neuropsychological testing. Structural network models were constructed using diffusion MRI-based multifiber tractography and T(1)-weighted MRI-based regional gray matter segmentation. Global network measures included whole-brain structural integration, connection strength, and structural segregation. Cognition was measured using a neuropsychological global deficit score (GDS) as well as individual cognitive domains. Results revealed that HIV+ participants exhibited significant disruptions to whole-brain networks, characterized by weaker structural integration (characteristic path length and efficiency), connection strength, and structural segregation (clustering coefficient) than HIV− controls (p < 0.05). GDSs and performance on learning/recall tasks were negatively correlated with the clustering coefficient (p < 0.05) in HIV+ participants. Results from this study indicate disruption to brain network integrity in treatment-limited HIV+ young adults with corresponding abnormalities in cognitive performance

    Preliminary Investigation of Tracer Gas Reaeration Method for Shallow Bays

    Get PDF
    Accurate estimates of surface exchange rates for volatile pollutants in bays are needed to allow predictions of pollutant movement and retention time. The same types of estimates can be used to calculate reaeration rates. The tracer gas technique has been used to measure surface gas transfer rates in rivers, and to a lesser extent, in estuaries. Application of the technique to bays would be extremely useful, but it is complicated by differences in the hydrodynamics and the density stratification that can exist due to fresh river water overriding heavier saline ocean water. The objective of this research has been to investigate field procedures for application of the tracer gas technique to shallow bays. The modified tracer technique was used with propane for the tracer gas and Rhodamine-WT, a fluorescent dye, for the "conservative" tracer. The propane was injected through porous tile diffusers, and the dye was released simultaneously. The propane acts as a model for the surface exchange of other gases and volatile compounds. Three four-day field trips to Lavaca Bay on the Texas coast of the Gulf of Mexico were made during the course of the study. A variety of experimental techniques was investigated. One was to make a short-duration injection (10-30 minutes) and sample the dye cloud as it moved through the bay. Another was to use a long-duration injection (3 to 4 hours) to obtain quasi-steady conditions. The long injections were discontinued because there appeared to be no practical method of determining the travel time for the samples taken from the tracer plume. Drogues (floats) which are normally used for this purpose consistently drifted downwind from the tracer plumes. Pulses of a second fluorescent dye for determining time of travel became too diffuse to be used for this purpose. The most promising method appears to be the short-duration injection method with a large pulse of the second dye released during the injection to mark the middle of the tracer cloud. A special injection device was designed to prevent mixing of the tracers with heavier saline water near the bed of the bay during injection. A field fluorometer was used both in the field to track the tracer cloud and in the laboratory to measure dye concentrations in the field samples. Propane concentrations were determined with gas chromatography. The same equipment was used to perform laboratory studies to test performance of the equipment in the field and to aid in understanding field test results. These were apparently the first tests to be performed using the tracer gas technique in bays. As a result, the emphasis was on the development of techniques rather than on obtaining data. It appears that workable techniques have been developed, but they now need to be tested under a variety of conditions. Also, the preliminary results which were obtained for gas transfer coefficients indicate some anomalous results. After the completion of the project, it was learned that the addition of formalin to the field tracer gas samples may be affecting the samples adversely. Thus, some laboratory tests are now needed to investigate the behavior of tracer gases in bay water. In summary, the method appears to be very promising, but some additional developmental work is required before it can be used on a routine basi

    Accuracy and consistency of grass pollen identification by human analysts using electron micrographs of surface ornamentation

    Get PDF
    • Premise of the study: Humans frequently identify pollen grains at a taxonomic rank above species. Grass pollen is a classic case of this situation, which has led to the development of computational methods for identifying grass pollen species. This paper aims to provide context for these computational methods by quantifying the accuracy and consistency of human identification. • Methods: We measured the ability of nine human analysts to identify 12 species of grass pollen using scanning electron microscopy images. These are the same images that were used in computational identifications. We have measured the coverage, accuracy, and consistency of each analyst, and investigated their ability to recognize duplicate images. • Results: Coverage ranged from 87.5% to 100%. Mean identification accuracy ranged from 46.67% to 87.5%. The identification consistency of each analyst ranged from 32.5% to 87.5%, and each of the nine analysts produced considerably different identification schemes. The proportion of duplicate image pairs that were missed ranged from 6.25% to 58.33%. • Discussion: The identification errors made by each analyst, which result in a decline in accuracy and consistency, are likely related to psychological factors such as the limited capacity of human memory, fatigue and boredom, recency effects, and positivity bias

    Complexity of childhood sexual abuse: predictors of current post-traumatic stress disorder, mood disorders, substance use, and sexual risk behavior among adult men who have sex with men

    Full text link
    Men who have sex with men (MSM) are the group most at risk for HIV and represent the majority of new infections in the United States. Rates of childhood sexual abuse (CSA) among MSM have been estimated as high as 46 %. CSA is associated with increased risk of HIV and greater likelihood of HIV sexual risk behavior. The purpose of this study was to identify the relationships between CSA complexity indicators and mental health, substance use, sexually transmitted infections, and HIV sexual risk among MSM. MSM with CSA histories (n = 162) who were screened for an HIV prevention efficacy trial completed comprehensive psychosocial assessments. Five indicators of complex CSA experiences were created: CSA by family member, CSA with penetration, CSA with physical injury, CSA with intense fear, and first CSA in adolescence. Adjusted regression models were used to identify relationships between CSA complexity and outcomes. Participants reporting CSA by family member were at 2.6 odds of current alcohol use disorder (OR 2.64: CI 1.24–5.63), two times higher odds of substance use disorder (OR 2.1: CI 1.02–2.36), and 2.7 times higher odds of reporting an STI in the past year (OR 2.7: CI 1.04–7.1). CSA with penetration was associated with increased likelihood of current PTSD (OR 3.17: CI 1.56–6.43), recent HIV sexual risk behavior (OR 2.7: CI 1.16–6.36), and a greater number of casual sexual partners (p = 0.02). Both CSA with Physical Injury (OR 4.05: CI 1.9–8.7) and CSA with Intense Fear (OR 5.16: CI 2.5–10.7) were related to increased odds for current PTSD. First CSA in adolescence was related to increased odds of major depressive disorder. These findings suggest that CSA, with one or more complexities, creates patterns of vulnerabilities for MSM, including post-traumatic stress disorder, substance use, and sexual risk taking, and suggests the need for detailed assessment of CSA and the development of integrated HIV prevention programs that address mental health and substance use comorbidities.This study was supported by a Grant from the NIMH (R01 MH095624) PI: O'Cleirigh; Author time (Safren) was supported, in part, by Grant 5K24MH094214. (R01 MH095624 - NIMH; 5K24MH094214)Accepted manuscrip
    • …
    corecore