4,864 research outputs found

    Primary structure and sexual stage-specific expression of a LAMMER protein kinase of Plasmodium falciparum.

    Get PDF
    We have isolated a LAMMER-like gene from Plasmodium falciparum by vectorette technique. The gene consists of 3316 bp encoding a protein 881 amino acids with a predicted molecular mass of approximately 106.7 kDa. The encoded protein, termed PfLAMMER, is composed of two distinct domains. The N-terminal domain is not related to any previously described protein kinases and has several interesting features including multiple consensus phosphorylation sites for a range of protein kinases, a number of RS/SR dipeptides, a large proportion of charged amino acids, two putative nuclear localisation signals and 14 copies of a tetramer DKYD repeats. The C-terminal domain is characteristic of a kinase in the LAMMER family with the highest homology to the Arabidopsis thaliana AFC3 kinase. Genomic restriction analysis showed that PfLAMMER is encoded by a single copy gene in the parasite genome. A single transcript of approximately 3800 nucleotides is expressed specifically in the sexual stage, indicating that PfLAMMER may be important in regulating the processes of sexual differentiation of the parasite

    Insights into the design of spray systems for cell therapies for retinal disease using computational modelling

    Get PDF
    Chronic eye diseases are the main cause of vision loss among adults. Among these, retinal degenerative diseases affect millions of people globally, causing permanent loss of cells and organ dysfunction. Despite recent progress in developing stem cell therapies for retinal diseases, methods for delivery remain an area of intense research. Aerosol technology is a promising technique with the potential to spray cells evenly and directly across the retinal surface, promoting cell attachment and survival. Here we implement mathematical modelling of the spraying process to develop organ-specific spraying parameters in this therapeutic scenario. Firstly, we characterise the rheological parameters for a typical hydrogel used for spraying cells. These parameters are then integrated into a 3D computational model of an adult human eye under realistic surgical conditions. Simulation results provide quantitative relationships between the volume flow rate of the cell-laden hydrogel, external pressure needed for aerosolization, angle of the spraying, and properties of the cell delivery. An experimental assessment is also carried out to explore the impact of spraying under the regimes identified by the computational model on cell viability. This is the first stage towards using computational models to inform the design of spray systems to deliver cell therapies onto the human retina

    A solver combining reduced basis and convergence acceleration with applications to non-linear elasticity

    Get PDF
    International audienceAn iterative solver is proposed to solve the family of linear equations arising from the numerical computation of non‐linear problems. This solver relies on two quantities coming from previous steps of the computations: the preconditioning matrix is a matrix that has been factorized at an earlier step and previously computed vectors yield a reduced basis. The principle is to define an increment in two sub‐steps. In the first sub‐step, only the projection of the unknown on a reduced subspace is incremented and the projection of the equation on the reduced subspace is satisfied exactly. In the second sub‐step, the full equation is solved approximately with the help of the preconditioner. Last, the convergence of the sequences is accelerated by a well‐known method, the modified minimal polynomial extrapolation. This algorithm assessed by classical benchmarks coming from shell buckling analysis. Finally, its insertion in path following techniques is discussed. This leads to non‐linear solvers with few matrix factorizations and few iterations

    Developing a health state classification system from NEWQOL for epilepsy using classical psychometric techniques and Rasch analysis: a technical report

    Get PDF
    Aims: Resource allocation amongst competing health care interventions is informed by evidence of both clinical- and cost-effectiveness. Cost-utility analysis is increasingly used to assess cost effectiveness through the use of Quality Adjusted Life Years (QALYs). This requires health state values. Generic measures of health related quality of life (HRQL) are usually used to produce these values, but there are concerns about their relevance and sensitivity in epilepsy. This study develops a health state classification system for epilepsy from the NEWQOL battery, a validated questionnaire measuring QoL in epilepsy. The classification system will be amenable to valuation for calculating QALYs. Methods: Factor and other psychometric analyses were undertaken to investigate the factor structure of the battery, and assess the validity and responsiveness of the items. These analyses were used alongside Rasch analysis to select the dimensions included in the classification system, and the items used to represent each domain. Analysis was carried out on a trial dataset of patients with epilepsy (n=1611). Rasch and factor analysis were performed on one half of the sample and validated on the remaining half. Dimensions and items were selected that performed well across all analyses. Results: The battery was found to demonstrate reliability and validity but responsiveness across time periods for many of the items was low. A six dimension classification system was developed: worry about seizures, depression, memory, cognition, stigmatism and control, each with four response levels. Conclusions: It is feasible to develop a health state classification system from a battery of instruments using a combination of classical psychometric, factor and Rasch analysis. This is the first condition-specific health state classification developed for epilepsy and the next stage will produce preference weights to enable the measure to be used in cost-utility analysis.quality adjusted life years; health related quality of life; Rasch analysis; preference-based measures of health; health states; epilepsy

    Developing a health state classification system from NEWQOL for epilepsy using classical psychometric techniques and Rasch analysis: A technical report

    Get PDF
    Aims: Resource allocation amongst competing health care interventions is informed by evidence of both clinical- and cost-effectiveness. Cost-utility analysis is increasingly used to assess cost effectiveness through the use of Quality Adjusted Life Years (QALYs). This requires health state values. Generic measures of health related quality of life (HRQL) are usually used to produce these values, but there are concerns about their relevance and sensitivity in epilepsy. This study develops a health state classification system for epilepsy from the NEWQOL battery, a validated questionnaire measuring QoL in epilepsy. The classification system will be amenable to valuation for calculating QALYs. Methods: Factor and other psychometric analyses were undertaken to investigate the factor structure of the battery, and assess the validity and responsiveness of the items. These analyses were used alongside Rasch analysis to select the dimensions included in the classification system, and the items used to represent each domain. Analysis was carried out on a trial dataset of patients with epilepsy (n=1611). Rasch and factor analysis were performed on one half of the sample and validated on the remaining half. Dimensions and items were selected that performed well across all analyses. Results: The battery was found to demonstrate reliability and validity but responsiveness across time periods for many of the items was low. A six dimension classification system was developed: worry about seizures, depression, memory, cognition, stigmatism and control, each with four response levels. Conclusions: It is feasible to develop a health state classification system from a battery of instruments using a combination of classical psychometric, factor and Rasch analysis. This is the first condition-specific health state classification developed for epilepsy and the next stage will produce preference weights to enable the measure to be used in cost-utility analysis

    Socio-economic status influences the relationship between obesity and antenatal depression: Data from a prospective cohort study

    Get PDF
    Background Obesity has been associated with increased risk of antenatal depression, but little is known about this relationship. This study tested whether socio-economic status (SES) influences the relationship between obesity and antenatal depression. Methods Data were taken from the Screening for Pregnancy Endpoints (SCOPE) cohort. BMI was calculated from measured height and weight at 15±1 weeks' gestation. Underweight women were excluded. SES was indicated by self-reported household income (dichotomised around the median: low SES ≀£45,000; high SES >ÂŁ45,000). Antenatal depression was defined as scoring ≄13 on the Edinburgh Postnatal Depression Scale at both 15±1 and 20±1 weeks' gestation, to identify persistently elevated symptoms of depression. Results Five thousand five hundred and twenty two women were included in these analyses and 5.5% had persistently elevated antenatal depression symptoms. There was a significant interaction between SES and BMI on the risk of antenatal depression (p=0.042). Among high SES women, obese women had approximately double the odds of antenatal depression than normal weight controls (AOR 2.11, 95%CI 1.16–3.83, p=0.014, adjusted for confounders). Among low SES women there was no association between obesity and antenatal depression. The interaction effect was robust to alternative indicators of SES in sensitivity analyses. Limitations 1) Antenatal depression was assessed with a self-reported screening measure; and 2) potential mediators such as stigma and poor body-image could not be examined. Conclusions Obesity was only associated with increased risk of antenatal depression among high SES women in this sample. Healthcare professionals should be aware that antenatal depression is more common among low SES women, regardless of BMI category

    Comparison of tolerability and adverse symptoms in oxcarbazepine and carbamazepine in the treatment of trigeminal neuralgia and neuralgiform headaches using the Liverpool Adverse Events Profile (AEP)

    Get PDF
    Background Adverse effects of drugs are poorly reported in the literature . The aim of this study was to examine the frequency of the adverse events of antiepileptic drugs (AEDs), in particular carbamazepine (CBZ) and oxcarbazepine (OXC) in patients with neuralgiform pain using the psychometrically tested Liverpool Adverse Events Profile (AEP) and provide clinicians with guidance as to when to change management. Methods The study was conducted as a clinical prospective observational exploratory survey of 161 patients with idiopathic trigeminal neuralgia and its variants of whom 79 were on montherapy who attended a specialist clinic in a London teaching hospital over a period of 2 years. At each consultation they completed the AEP questionnaire which provides scores of 19–76 with toxic levels being considered as scores >45. Results The most common significant side effects were: tiredness 31.3 %, sleepiness 18.2 %, memory problems 22.7 %, disturbed sleep 14.1 %, difficulty concentrating and unsteadiness 11.6 %. Females reported significantly more side effects than males. Potential toxic dose for females is approximately 1200 mg of OXC and 800 mg of CBZ and1800mg of OXC and 1200 mg of CBZ for males. Conclusions CBZ and OXC are associated with cognitive impairment. Pharmacokinetic and pharmacodynamic differences are likely to be the reason for gender differences in reporting side effects. Potentially, females need to be prescribed lower dosages in view of their tendency to reach toxic levels at lower dosages. Side effects associated with AED could be a major reason for changing drugs or to consider a referral for surgical management
    • 

    corecore