1,402 research outputs found

    Stratigraphy of the Hawai'i Scientific Drilling Project core (HSDP2): Anatomy of a Hawaiian shield volcano

    Get PDF
    The Hawai'i Scientific Drilling Project (HSDP2) successfully drilled ∼3.1 km into the island of Hawai'i. Drilling started on Mauna Loa volcano, drilling 247 m of subaerial lavas before encountering 832 m of subaerial Mauna Kea lavas, followed by 2019 m of submarine Mauna Kea volcanic and sedimentary units. The 2.85 km stratigraphic record of Mauna Kea volcano spans back to ∼650 ka. Mauna Kea subaerial lavas have high average olivine contents (13 vol.%) and low average vesicle abundances (10 vol.%). Most subaerial Mauna Kea flows are ‘a‘ā (∼63%), whereas the Mauna Loa section contains nearly equal amounts of pāhoehoe and ‘a‘ā (like its current surface). The submarine Mauna Kea section contains an upper, ∼900 m thick, hyaloclastite-rich section and a lower, ∼1100 m thick, pillow-lava-dominated section. These results support a model that Hawaiian volcanoes are built on a pedestal of pillow lavas capped by rapidly quenched, fragmented lava debris. The HSDP2 section is compared here to a 1.7 km deep hole (SOH1) on Kilauea's lower east rift zone. Differences in the sections reflect the proximity to source vents and the lower magma supply to Kilauea's rift zone. Both drill core sections are cut by intrusions, but the higher abundance of intrusions in SOH1 reflects its location within a rift zone, causing more extensive alteration in the SOH1 core. The HSDP2 site recovered a relatively unaltered core well suited for geochemical analyses of the single deepest and most complete borehole ever drilled through a Hawaiian or any other oceanic island volcano

    CARES/Life Software for Designing More Reliable Ceramic Parts

    Get PDF
    Products made from advanced ceramics show great promise for revolutionizing aerospace and terrestrial propulsion, and power generation. However, ceramic components are difficult to design because brittle materials in general have widely varying strength values. The CAPES/Life software eases this task by providing a tool to optimize the design and manufacture of brittle material components using probabilistic reliability analysis techniques. Probabilistic component design involves predicting the probability of failure for a thermomechanically loaded component from specimen rupture data. Typically, these experiments are performed using many simple geometry flexural or tensile test specimens. A static, dynamic, or cyclic load is applied to each specimen until fracture. Statistical strength and SCG (fatigue) parameters are then determined from these data. Using these parameters and the results obtained from a finite element analysis, the time-dependent reliability for a complex component geometry and loading is then predicted. Appropriate design changes are made until an acceptable probability of failure has been reached

    Elongated Tetrakaidecahedron Micromechanics Model for Space Shuttle External Tank Foams

    Get PDF
    The results of microstructural characterization studies and physical and mechanical testing of BX-265 and NCFI24-124 foams are reported. A micromechanics model developed previously by the authors is reviewed, and the resulting equations for the elastic constants, the relative density, and the strength of the foam in the principal material directions are presented. The micromechanics model is also used to derive equations to predict the effect of vacuum on the tensile strength and the strains induced by exposure to vacuum. Using a combination of microstructural dimensions and physical and mechanical measurements as input, the equations for the elastic constants and the relative density are applied and the remaining microstructural dimensions are predicted. The predicted microstructural dimensions are in close agreement with the average measured values for both BX-265 and NCFI24-124. With the microstructural dimensions, the model predicts the ratio of the strengths in the principal material directions for both foams. The model is also used to predict the Poisson s ratios, the vacuum-induced strains, and the effect of vacuum on the tensile strengths. However, the comparison of these predicted values with the measured values is not as favorable

    Yield Behavior of Solution Treated and Aged Ti-6Al-4V

    Get PDF
    Post yield uniaxial tension-compression tests were run on a solution treated and aged (STA), titanium 6-percent aluminum 4-percent vanadium (Ti-6Al-4V) alloy to determine the yield behavior on load reversal. The material exhibits plastic behavior almost immediately on load reversal implying a strong Bauschinger effect. The resultant stress-strain data was compared to a 1D mechanics model and a finite element model used to design a composite overwrapped pressure vessel (COPV). Although the models and experimental data compare well for the initial loading and unloading in the tensile regime, agreement is lost in the compressive regime due to the Bauschinger effect and the assumption of perfect plasticity. The test data presented here are being used to develop more accurate cyclic hardening constitutive models for future finite element design analysis of COPVs

    Predictive risk mapping of an environmentally-driven infectious disease using spatial Bayesian networks: A case study of leptospirosis in Fiji

    Get PDF
    Introduction Leptospirosis is a zoonotic disease responsible for over 1 million severe cases and 60,000 deaths annually. The wide range of animal hosts and complex environmental drivers of transmission make targeted interventions challenging, particularly when restricted to regression-based analyses which have limited ability to deal with complexity. In Fiji, important environmental and socio-demographic factors include living in rural areas, poverty, and livestock exposure. This study aims to examine drivers of transmission under different scenarios of environmental and livestock exposures. Methods Spatial Bayesian networks (SBN) were used to analyse the influence of livestock and poverty on the risk of leptospirosis infection in urban compared to rural areas. The SBN models used a combination of spatially-explicit field data from previous work and publically available census information. Predictive risk maps were produced for overall risk, and for scenarios related to poverty, livestock, and urban/rural setting. Results While high, rather than low, commercial dairy farm density similarly increased the risk of infection in both urban (12% to 18%) and rural areas (70% to 79%), the presence of pigs in a village had different impact in rural (43% to 84%) compared with urban areas (4% to 24%). Areas with high poverty rates were predicted to have 26.6% and 18.0% higher probability of above average seroprevalence in rural and urban areas, respectively. In urban areas, this represents >300% difference between areas of low and high poverty, compared to 43% difference in rural areas. Conclusions Our study demonstrates the use of SBN to provide valuable insights into the drivers of leptospirosis transmission under complex scenarios. By estimating the risk of leptospirosis infection under different scenarios, such as urban versus rural areas, these subgroups or areas can be targeted with more precise interventions that focus on the most relevant key drivers of infection

    Mechanical Properties Evaluation of Ti-6Al-4V Thin-Wall Structure Produced by a Hybrid Manufacturing Process

    Get PDF
    The hybrid manufacturing (HM) process combines the precision of computer numerical control (CNC) and the freeform capability of additive manufacturing to expand the versatility of advanced manufacturing. The intent of this paper is to explore the relationship between HM processing parameters and mechanical properties of the final parts manufactured by one type of HM process that combines laser metal deposition (LMD) and CNC milling. The design of experiment (DOE) is implemented to explore the Ti-6Al-4V thin-wall structure fabrication process with different HM build strategies. Vickers hardness, tensile test, and microstructure analyses are conducted to evaluate the mechanical property variance within the final parts fabricated according to the DOE matrix. Finally, a prediction model of yield strength at 0.2% offset for Ti-6Al-4V parts built through the aforementioned HM process was obtained by an analysis of variance (ANOVA) test, which revealed the significant factors are build height within each LMD process, laser energy input, and the interaction of build height within each LMD process to the preheating condition

    VLA Observations of a New Population of Blazars

    Full text link
    We present the first deep VLA radio images of flat-spectrum radio quasars (FSRQ) with multiwavelength emission properties similar to those of BL Lacs with synchrotron X-rays. Our observations of twenty-five of these sources show that their radio morphologies are similar to those of other radio quasars. However, their range of extended powers is more similar to that of BL Lacertae objects (BL Lacs) and extends down to the low values typical of FR I radio galaxies. Five out of our nine lobe-dominated sources have extended radio powers in the range typical of both FR I and FR II radio galaxies, but their extended radio structure is clearly FR II-like. Therefore, we have not yet found a large population of radio quasars hosted by FR Is. Two thirds of our sources have a core-dominated radio morpholgy and thus X-rays likely dominated by the jet. We find that their ratios of radio core to total X-ray luminosity are low and in the regime indicative of synchrotron X-rays. This result shows that also blazars with strong emission lines can produce jets of high-energy synchrotron emission and undermines at least in part the ``blazar sequence'' scenario which advocates that particle Compton cooling by an external radiation field governs the frequency of the synchrotron emission peak.Comment: 26 pages, 33 figures. Accepted for publication in Ap

    Probabilistic Prediction of Lifetimes of Ceramic Parts

    Get PDF
    ANSYS/CARES/PDS is a software system that combines the ANSYS Probabilistic Design System (PDS) software with a modified version of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) Version 6.0 software. [A prior version of CARES/Life was reported in Program for Evaluation of Reliability of Ceramic Parts (LEW-16018), NASA Tech Briefs, Vol. 20, No. 3 (March 1996), page 28.] CARES/Life models effects of stochastic strength, slow crack growth, and stress distribution on the overall reliability of a ceramic component. The essence of the enhancement in CARES/Life 6.0 is the capability to predict the probability of failure using results from transient finite-element analysis. ANSYS PDS models the effects of uncertainty in material properties, dimensions, and loading on the stress distribution and deformation. ANSYS/CARES/PDS accounts for the effects of probabilistic strength, probabilistic loads, probabilistic material properties, and probabilistic tolerances on the lifetime and reliability of the component. Even failure probability becomes a stochastic quantity that can be tracked as a response variable. ANSYS/CARES/PDS enables tracking of all stochastic quantities in the design space, thereby enabling more precise probabilistic prediction of lifetimes of ceramic components

    Nonuniversal Effects in the Homogeneous Bose Gas

    Full text link
    Effective field theory predicts that the leading nonuniversal effects in the homogeneous Bose gas arise from the effective range for S-wave scattering and from an effective three-body contact interaction. We calculate the leading nonuniversal contributions to the energy density and condensate fraction and compare the predictions with results from diffusion Monte Carlo calculations by Giorgini, Boronat, and Casulleras. We give a crude determination of the strength of the three-body contact interaction for various model potentials. Accurate determinations could be obtained from diffusion Monte Carlo calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te
    corecore