CARES/LIFE SOFTWARE FOR DESIGNING MORE RELIABLE CERAMIC PARTS

NOEL N. NEMETH NASA Lewis Research Center Cleveland, Ohio

Lynn M. Powers^{*} Case Western Reserve University Cleveland, Ohio

and

Eric H. Baker* Cleveland State University Cleveland, Ohio

Introduction

Products made from advanced ceramics show great promise for revolutionizing aerospace and terrestrial propulsion, and power generation. However, ceramic components are difficult to design because brittle materials in general have widely varying strength values. The CARES/Life software (refs. 1 to 5) eases this task by providing a tool to optimize the design and manufacture of brittle material components using probabilistic reliability analysis techniques.

Probabilistic component design involves predicting the probability of failure for a thermomechanically loaded component from specimen rupture data. Typically, these experiments are performed using many simple geometry flexural or tensile test specimens. A static, dynamic, or cyclic load is applied to each specimen until fracture. Statistical strength and SCG (fatigue) parameters are then determined from these data. Using these parameters and the results obtained from a finite element analysis, the time-dependent reliability for a complex component geometry and loading is then predicted. Appropriate design changes are made until an acceptable probability of failure has been reached.

CARES/Life is an integrated package that predicts the probability of a monolithic ceramic component's failure as a function of time in service. It couples commercial finite element programs -- which resolve a component's temperature and stress distribution -- to reliability evaluation and fracture mechanics routines for modeling strength-limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength. CARES/Life accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the

11-21 12 11

^{*}NASA Resident Research Associate at Lewis Research Center.

power law, Paris law, or Walker equation. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principal of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded on static, dynamic, or cyclic fatigue.

The capability, flexibility, and uniqueness of CARES/Life has attracted much interest. Initially, the program was developed with an emphasis on technical features and less regard was given to ease-of-use. However, over time the program became more intricate -- requiring a higher level of expertise needed to achieve a desired result. Based on feedback from users, who typically used the program on an intermittent basis, it was found that the program's capabilities were underutilized because of it's complexity. First and foremost users wanted an easier to use program. To begin to address this criticism, CARES/Life has been upgraded with the following:

• Data files to create graphic templates for common business presentation software such as Lotus Freelance Graphics. This feature, known as CARES/*Graphics*, produces Weibull and fatigue plots of specimen rupture data and estimated parameters.

• An interactive input preparation program has been prepared which guides the user through various program control options and data input formats. This program, known as CARES/Input, is written in FORTRAN 77 and operates on PC's as well as Unix machines.

• A new interface program between the ANSYS finite element analysis program and CARES/*Life*. This program, known as ANSCARES, has a finite element model geometry surface recognition feature allowing surface flaw reliability to be performed without the previous requirement of shell elements being attached to the model's surface nodes. This program also has an expanded element library, including axisymmetric elements.

• A grinding damage model (ref. 6) has been added to account for flaws introduced from finishing (grinding) operations on components. This model is based on Batdorf methodology modified to account for non-random (anisotropic) orientation of flaws.

• Capability to use a finite element model of a specimen geometry and loading to obtain volume and area normalized Weibull and fatigue parameters.

CARES/Life has been in high demand world-wide, although present technology transfer efforts are primarily focused on U.S.-based organizations. Success stories can be cited in several industrial sectors including aerospace, automotive, biomedical, electronic, glass, nuclear, and conventional power generation industries. In 1997 Lewis Research Center (LeRC) in partnership with Philips Display Components Company (PDCC) and Corning Incorporated, won the American Ceramic Society Corporate Technical Achievement Award for the design and manufacture of an improved television picture tube (by PDCC) for the U.S. consumer market. Also an R&D 100 Award from R&D Magazine was recieved in 1995, the NASA Software of

the Year Award, and a Federal Laboratory Consortium Technology Transfer Award were received in 1994.

References

1. Nemeth, N. N., Powers, L. M., Janosik, L. A., and Gyekenyesi, J. P.: "Time-Dependent Reliability Analysis of Monolithic Ceramic Components Using the CARES/*Life* Integrated Design Program," Life Prediction Methodologies and Data for Ceramic Materials, ASTM STP 1201, C. R. Brinkman, and S. F. Duffy, Eds., American Society for Testing and Materials, Philadelphia, 1993, pp. 390-408.

2. Powers, L. M., Janosik, L. A., Nemeth, N. N., and Gyekenyesi, J. P.: "Lifetime Reliability Evaluation of Monolithic Ceramic Components Using the CARES/*Life* Integrated Design Program," Proceedings of the American Ceramic Society Meeting and Exposition, Cincinnati, Ohio, April 19-22, 1993.

3. Nemeth, N. N., Powers, L. M., Janosik, L. A., and Gyekenyesi, J. P.: "Designing Ceramic Components for Durability," American Ceramic Society Bulletin, Vol 72, no. 12, December, 1993, pp. 59-66.

4. Nemeth, N. N., Powers, L. M., Janosik, L. A., and Gyekenyesi, J. P.: "Durability Evaluation of Ceramic Components Using CARES/*Life*," ASME Transactions; Journal of Engineering For Gas Turbines and Power, Vol. 118, No. 1, January 1996, pp. 150-158.

5. Janosik, L. A., Gyekenyesi, J. P., Nemeth, N. N., and Powers, L. M.: "NASA CARES Dual-Use Ceramic Technology Spinoff Applications." Proceedings of the Thirty-Second Space Congress, Cocoa Beach, FL, April 25-28, 1995.

6. Salem, J. A., Nemeth, N.N., Choi, S. R., and Powers, L. M.: "Reliability Analysis of Uniaxially Ground Brittle Materials", ASME Transactions; Journal of Engineering For Gas Turbines and Power, Vol. 118, No. 4, October 1996, pp. 863-871.

Outline

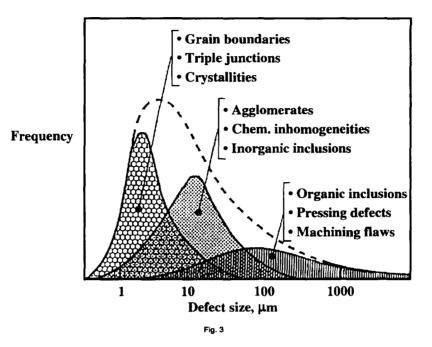

- Probabilistic ceramic component design
- CARES/Life computer program
- Ease-of-use enhancements
- Technology transfer
- Conclusion

Fig. 1

Objective

Develop probabilistic based integrated design programs for the life analysis of brittle material structural components

Typical Defect Populations Found in Engineering Ceramics Manufactured From Powders

Fracture Map of Hot Pressed Si₃N₄

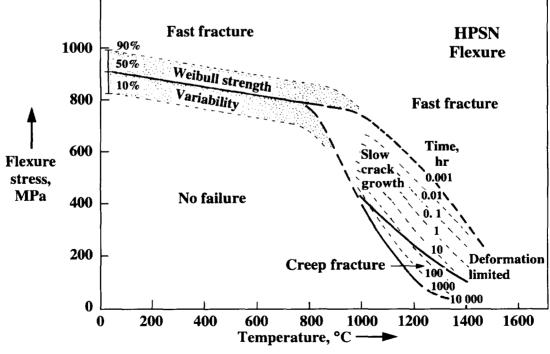
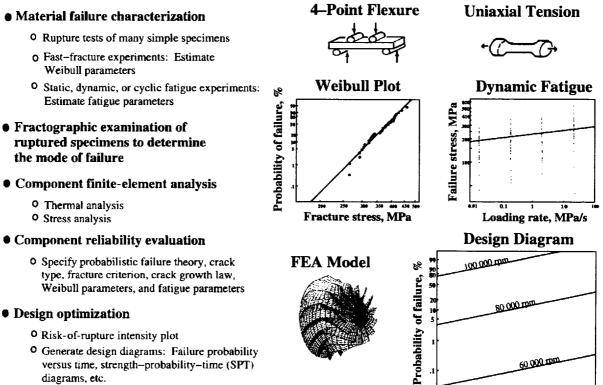



Fig. 4

Probabilistic Component Design Procedure

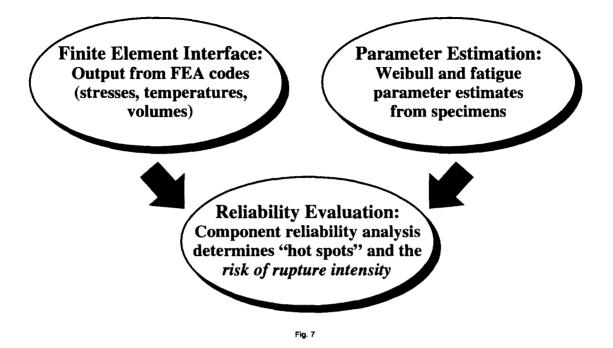

60 000 mm

104

10

Time, hr

⁰ Generate design diagrams: Failure probability versus time, strength-probability-time (SPT) diagrams, etc.


CARES/Life

Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program

- Predicts the probability of a monolithic ceramic components failure relative to its service life
- · Couples commercially available finite element programs to probabilistic design

6

NASA/CARES - Modular Format

CARES/Life Capabilities

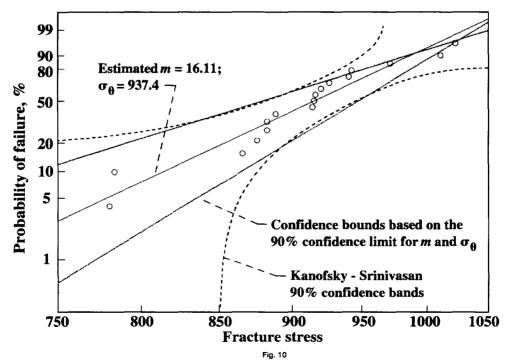
• Component reliability evaluation

- Fast-fracture
- Time- or cycle-dependent
- Multiaxial stress states
- Proof test loads
- Random or *non-random* flaw orientation (*new capability*)

• Material characterization

- Any specimen geometry (new capability)
- Instantaneous load
- Static load
- Constant stress rate load
- Cyclic load

Version 5 - New Features and Changes


Enhance Functionality and Ease-of-Use

CARES/Graphics:	Graphical rendering of specimen rupture data; Weibull plots, static fatigue, dynamic fatigue, cyclic fatigue
CARES/Input:	An interactive input preparation program
ANCARES:	ANSYS FEA-CARES/Life interface (Most CARES/Life users have ANSYS)
WinCARES:	A Windows based GUI shell controlling the various FORTRAN-based numerical algorithms (Under construction)

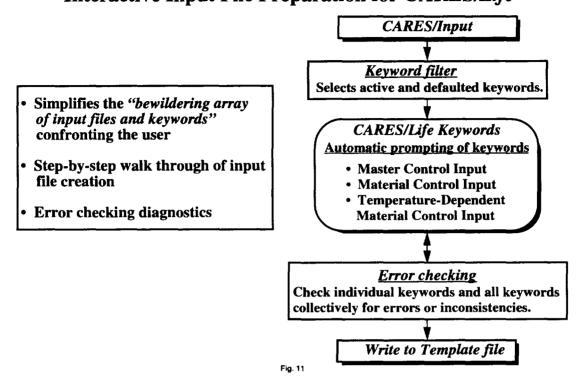
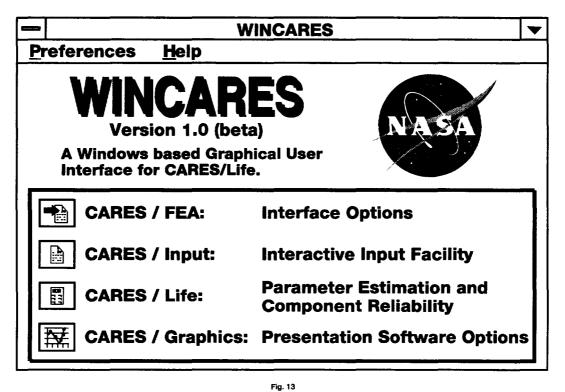

CARES/Graphics

Fig. 9

User friendly graphics templates for common business presentation software Two Parameter Weibull Plot of Fast Fracture Data

CARES/Input Interactive Input File Preparation for CARES/*Life*



ANSYS-CARES Interface

 Automatic detection **Finite element** and modeling of analysis component surfaces • Component risk of rupture rendering **ANSCARES 2.0** SURFACE interface program macro Robust element library (solid, shell, axisymemetric) CARES/Life Component risk of rupture rendering

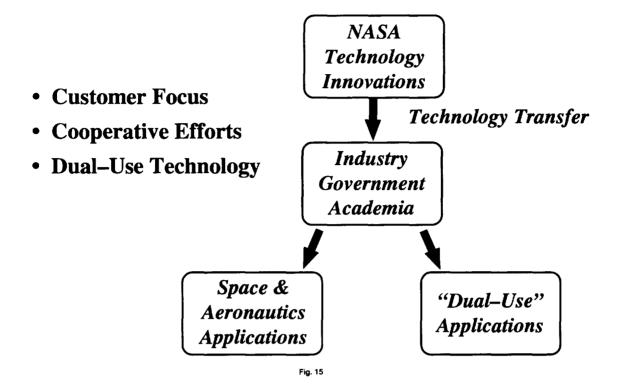
9

WINCARES: A GUI for the CARES/Life algorithm

Diverse Range of CARES/Life Applications

Aerospace/Terrestrial Power & Propulsion Applications

- Turbocharger rotors
- Rocker arm and cam followers
- Radient heater tubes
- Prototype ceramic turbines
- Poppet valves
- Combustors
- Heat exchangers


Bioengineering Applications

- Dental crowns
- Hip implants

Other Dual-Use Applications

- Infrared transmission windows
- Ceramic packaging for microprocessors
- Cathode ray tubes

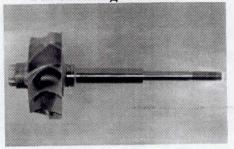
Successful Technology Transfer

Requests for CARES/Life in Past Year (U.S.)

AlliedSignal	APU Turbine Rotors
Army	Chip Packages and Electronic Hardware
Battelle	Composites Consortium
Caterpillar	Various Engine Parts
Ceramatec	Fuel Cells, Oxygen Generators, Sensors
Cummins	Fuel Injectors
Los Alamos Nat. Lab.	Alumina Windows for Particle Accelerators
MIT/ARPA	Micro Gas Turbines
3M	Various Ceramic Parts
NASA Ames	Reusable Spacecraft Thermal Protection
NGK	Various Ceramic Parts
Novellus	Semiconductor Wafer Manufacturing Equipment
Snaprogetti	Heat Exchangers, Chemical Reactors
Teledyne TCAE	Auto. Gas Turbines
Thomson	Television Picture Tubes
U. Of Mass.	Research, and Teaching
U. Of Penn.	Research
Westinghouse	Submarine Reactor Thrust Bearing

11

NASA/CARES Dual-Use Ceramics Design Examples


Dental Crown

ZnSe Vacuum Chamber Window

Turbocharger Wheel

Television Picture Tube

NASA LeRC's innovative CARES/Life software design tool allowed Philips to develop superior glass television picture tubes

Fig. 17

- Manufactured over 1 million components
- Realized cost savings in excess of \$1 million/year
- Optimized structural design for safety, reliability, performance, and efficiency
- Optimized component fabrication process through use of design-for-manufacturability (DFM) techniques
- Reduced glass consumption, tube weight, hazardous waste, and x-ray emissions

★ 1996 American Ceramic Society Corporate Technical Achievement Award

★ 1995 R&D 100 Award

- ★ 1994 NASA Software-of-the-Year Award
- ★ 1994 Federal Laboratory Consortium Technology Transfer Award

Fig. 19

Conclusions

- Lighter weight and more durable ceramic components can be designed using CARES/Life
- Program ease of use is enhanced with new graphics, input preparation, and finite element interface modules
- Diligent technology transfer efforts have led to successful employment of *CARES/Life* across a diverse range of industrial sectors