11 research outputs found

    Formation of Neutral Peptide Aggregates Studied by Mass Selective IR Action Spectroscopy

    No full text
    The spontaneous aggregation of proteins and peptides is widely studied due to its relation to neurodegenerative diseases. To understand the underlying principles of peptide aggregation, elucidation of structure and structural changes upon their formation is key. This level of detail can be obtained by studying the peptide self-assembly in the gas phase. Structural characterization of aggregates is mainly done on charged species, as adding charges is an intrinsic part of the technique to bring molecules into the gas phase. Studying neutral peptide aggregates will complement the existing picture. These studies are restricted to dimers due to experimental limitations. Here, we present advances in laser desorption molecular beam spectroscopy to form neutral peptide aggregates in the gas phase consisting of up to fourteen monomeric peptides. The combination with IR-UV spectroscopy allowed us to select each aggregate by size and subsequently characterize its structure

    Probing the formation of isolated cyclo-FF peptide clusters by far-infrared action spectroscopy

    No full text
    Small cyclic peptides containing phenylalanine residues are prone to aggregate in the gas phase into highly hydrophobic chains. A combination of laser desorption, mass spectrometry and conformational selective IR-UV action spectroscopy allows us to obtain detailed structural insights into the formation processes of the cyclic l-phenylalanyl-l-phenylalanine dipeptide (named cyclo-FF) aggregates. The rigid properties of cyclo-FF result in highly resolved IR spectra for the smaller clusters (n ≤ 3) and corresponding conformational assignments. For the higher order clusters (n > 3) the spectra are less resolved, however the observed ratios, peak positions and trends in IR shifts are key to make predictions on their structural details. Whereas the mid-IR spectral region between 1000-1800 cm-1 turns out to be undiagnostic for these small aggregates and the 3 μm region only for specific calculated structures, the far-IR contains valuable information that allows for clear assignments

    Formation of Neutral Peptide Aggregates as Studied by Mass-Selective IR Action Spectroscopy

    Get PDF
    Contains fulltext : 206069.pdf (pub ) (Open Access

    Structural Properties of Phenylalanine-Based Dimers Revealed Using IR Action Spectroscopy

    No full text
    Peptide segments with phenylalanine residues are commonly found in proteins that are related to neurodegenerative diseases. However, the self-assembly of phenylalanine-based peptides can be also functional. Peptides containing phenylalanine residues with different side caps, composition, and chemical alteration can form different types of nanostructures that find many applications in technology and medicine. Various studies have been performed in order to explain the remarkable stability of the resulting nanostructures. Here, we study the early stages of self-assembly of two phenylalanine derived peptides in the gas phase using IR action spectroscopy. Our focus lies on the identification of the key intra- and intermolecular interactions that govern the formation of the dimers. The far-IR region allowed us to distinguish between structural families and to assign the 2-(2-amino-2-phenylacetamido)-2-phenylacetic acid (PhgPhg) dimer to a very symmetric structure with two intermolecular hydrogen bonds and its aromatic rings folded away from the backbone. By comparison with the phenylalanine-based peptide cyclic L-phenylalanyl-L-phenylalanine (cyclo-FF), we found that the linear FF dimer likely adopts a less ordered structure. However, when one more phenylalanine residue is added (FFF), a more structurally organized dimer is formed with several intermolecular hydrogen bonds

    Gas-Phase Infrared Spectroscopy of Neutral Peptides: Insights from the Far-IR and THz Domain

    No full text
    International audienceGas-phase, double resonance IR spectroscopy has proven to be an excellent approach to obtain structural information on peptides ranging from single amino acids to large peptides and peptide clusters. In this review, we discuss the state-of-the-art of infrared action spectroscopy of peptides in the far-IR and THz regime. An introduction to the field of far-IR spectroscopy is given, thereby highlighting the opportunities that are provided for gas-phase research on neutral peptides. Current experimental methods, including spectroscopic schemes, have been reviewed. Structural information from the experimental far-IR spectra can be obtained with the help of suitable theoretical approaches such as dynamical DFT techniques and the recently developed Graph Theory. The aim of this review is to underline how the synergy between far-IR spectroscopy and theory can provide an unprecedented picture of the structure of neutral biomolecules in the gas phase. The far-IR signatures of the discussed studies are summarized in a far-IR map, in order to gain insight into the origin of the far-IR localized and delocalized motions present in peptides and where they can be found in the electromagnetic spectrum

    Dimerization of the Benzyl Radical in a High-Temperature Pyrolysis Reactor Investigated by IR/UV Ion Dip Spectroscopy

    No full text
    Contains fulltext : 192134.pdf (publisher's version ) (Closed access

    Exploring the Aggregation Propensity of PHF6 Peptide Segments of the Tau Protein using Ion Mobility Mass Spectrometry Techniques

    No full text
    Peptide and protein aggregation involves the formation of oligomeric species, but the complex interplay between oligomers of different conformations and sizes complicates their structural elucidation. Using ion mobility mass spectrometry (IM-MS), we aim to reveal these early steps of aggregation for the Ac-PHF6-NH2 peptide segment from tau protein, thereby distinguishing between different oligomeric species, and gaining an understanding of the aggregation pathway. An important factor that is often neglected, but which can alter the aggregation propensity of peptides, is the terminal capping groups. Here we demonstrate the use of IM-MS to probe the early stages of aggregate formation of the Ac-PHF6-NH2, Ac-PHF6, PHF6-NH2, and uncapped PHF6 peptide segments. The aggregation propensity of the four PHF6 segments is confirmed using thioflavin T fluorescence assays and transmission electron microscopy. Post-IM fragmentation and quadrupole selection on the TIMS-Qq-ToF (trapped ion mobility) spectrometer are introduced to improve oligomer assignment. In addition, TIMS collision cross section values are compared with travelling wave ion mobility (TWIMS) data to evaluate potential instrumental bias in the trapped ion mobility results. The two IM-MS instrumental platforms are based on different ion mobility principles and have different configurations, thereby providing us with valuable insight into the preservation of weakly bound biomolecular complexes such as peptide aggregate

    Self-Reaction of ortho-Benzyne at High Temperatures Investigated by Infrared and Photoelectron Spectroscopy

    No full text
    Contains fulltext : 199557.pdf (publisher's version ) (Closed access

    Interactions of Aggregating Peptides Probed by IR-UV Action Spectroscopy

    No full text
    Peptide aggregation, the self-assembly of peptides into structured beta-sheet fibril structures, is driven by a combination of intra- and intermolecular interactions. Here, the interplay between intramolecular and formed inter-sheet hydrogen bonds and the effect of dispersion interactions on the formation of neutral, isolated, peptide dimers is studied by infrared action spectroscopy. Therefore, four different homo- and hetereogeneous dimers formed from three different alanine-based model peptides have been studied under controlled and isolated conditions. The peptides differ from one another in the presence and location of a UV chromophore containing cap on either the C- or N-terminus. Conformations of the monomers of the peptides direct the final dimer structure: strongly hydrogen bonded or folded structures result in weakly bound dimers. Here the intramolecular hydrogen bonds are favored over new intermolecular hydrogen bond interactions. In contrast, linearly folded monomers are the ideal template to form parallel beta-sheet type structures. The weak intramolecular hydrogen bonds present in the linear monomers are replaced by the stronger inter-sheet hydrogen bond interactions. The influence of π-π disperion interactions on the structure of the dimer is minimal, the phenyl rings have the tendency to fold away from the peptide backbone to favour intermolecular hydrogen bond interactions. Quantum chemical calculations confirm our experimental observations
    corecore