13 research outputs found

    Determination of Cadmium in Tap, Sea and Waste Water Samples by Vortex-Assisted Dispersive Liquid-Liquid-Solidified Floating Organic Drop Microextraction and Slotted Quartz Tube FAAS After Complexation with a Imidazole Based Ligand

    No full text
    This study presents a combination of dispersive liquid-liquid-solidified floating organic drop microextraction (DLLSFODM) and slotted quartz tube (SQT) with conventional flame atomic absorption spectrometry (FAAS) to improve the sensitivity for cadmium determination. A ligand namely 2-(4-methylphenyl)-1H-imidazo-[4,5-f]-[1,10]-phenanthroline which has not been used in trace analyte determination was used to form a cadmium complex. Stepwise optimization of parameters affecting complex formation (pH, ligand, and buffer solution) and extraction (extraction and dispersive solvents, salt effect and mixing) was done to maximize cadmium absorbance. The slotted quartz tube was fitted onto the flame burner and optimized to increase residence time of atoms in the flame. Instrumental parameters such as sample and fuel flow rate were also optimized to further enhance the absorbance signal for cadmium. Using optimal parameters and values, the limits of detection and quantification were determined to be 0.81 and 2.69 μg L−1, respectively. Low percent relative standard deviations (< 6.0%) indicated good precision for both extraction and instrumental measurements. Recovery tests were used to determine the accuracy of the method and the recovery results obtained were between 88 and 113%. [Figure not available: see fulltext.]. © 2018, Springer International Publishing AG, part of Springer Nature

    Prevalence of prostate cancer in high boron-exposed population: A community-based study

    No full text
    We investigated the possible relationship between boron exposure and prostate cancer (PCa) for men living and being employed at boron mines in villages with rich boron minerals. Out of 456 men studied, 159 were from villages with rich boron sources and boron levels in drinking water of >1 mg L -1 and these men formed the study group, while 63 from villages with rich boron sources and boron levels in drinking water of <1 mg L -1 were enrolled into control group 1. A further 234 subjects from other villages with no boron mines were considered as control group 2. Prostate specific antigen (PSA) levels could be obtained from a total of 423 men. Urinary boron concentration as an indicator of boron exposure in 63 subjects, prostatic volumes by transrectal ultrasonography in 39 subjects, and prostatic biopsies in 36 subjects were obtained for study and control groups. The daily boron exposure was calculated according to urinary boron levels. Although there was no significant difference among the groups in terms of total PSA levels, the number of subjects with tPSA ?2.5 and tPSA ?10.0 ng dL -1 prostatic volumes in men whose prostates were biopsied (p<0.012) was significantly lower in the study group as compared with those in the control group 2. These results suggested that high exposure to boron might have an implication within the prostatic cellular processes related to hyperplasia and carcinogenesis, even though we did not find a statistically significant association between PCa and boron exposure. © Springer Science+Business Media, LLC 2011.This research was supported by the National Boron Research Institute, grant no. AR-GE/6
    corecore