30 research outputs found

    The State of Self-Organized Criticality of the Sun During the Last Three Solar Cycles. II. Theoretical Model

    Full text link
    The observed powerlaw distributions of solar flare parameters can be interpreted in terms of a nonlinear dissipative system in the state of self-organized criticality (SOC). We present a universal analytical model of a SOC process that is governed by three conditions: (i) a multiplicative or exponential growth phase, (ii) a randomly interrupted termination of the growth phase, and (iii) a linear decay phase. This basic concept approximately reproduces the observed frequency distributions. We generalize it to a randomized exponential-growth model, which includes also a (log-normal) distribution of threshold energies before the instability starts, as well as randomized decay times, which can reproduce both the observed occurrence frequency distributions and the scatter of correlated parametyers more realistically. With this analytical model we can efficiently perform Monte-Carlo simulations of frequency distributions and parameter correlations of SOC processes, which are simpler and faster than the iterative simulations of cellular automaton models. Solar cycle modulations of the powerlaw slopes of flare frequency distributions can be used to diagnose the thresholds and growth rates of magnetic instabilities responsible for solar flares.Comment: Part II of Paper I: The State of Self-Organized Criticality of the Sun During the Last Three Solar Cycles. I. Observation

    DLCQ of Fivebranes, Large N Screening, and L^2 Harmonic Forms on Calabi Manifolds

    Get PDF
    We find one explicit L^2 harmonic form for every Calabi manifold. Calabi manifolds are known to arise in low energy dynamics of solitons in Yang-Mills theories, and the L^2 harmonic form corresponds to the supersymmetric ground state. As the normalizable ground state of a single U(N) instanton, it is related to the bound state of a single D0 to multiple coincident D4's in the non-commutative setting, or equivalently a unit Kaluza-Klein mode in DLCQ of fivebrane worldvolume theory. As the ground state of nonabelian massless monopoles realized around a monopole-``anti''-monopole pair, it shows how the long range force between the pair is screened in a manner reminiscent of large N behavior of quark-anti-quark potential found in AdS/CFT correspondence.Comment: LaTeX, 23 page

    ADHM/Nahm Construction of Localized Solitons in Noncommutative Gauge Theories

    Full text link
    We study the relationship between ADHM/Nahm construction and ``solution generating technique'' of BPS solitons in noncommutative gauge theories. ADHM/Nahm construction and ``solution generating technique'' are the most strong ways to construct exact BPS solitons. Localized solitons are the solitons which are generated by the ``solution generating technique.'' The shift operators which play crucial roles in ``solution generating technique'' naturally appear in ADHM/Nahm construction and we can construct various exact localized solitons including new solitons: localized periodic instantons (=localized calorons) and localized doubly-periodic instantons. Nahm construction also gives rise to BPS fluxons straightforwardly from the appropriate input Nahm data which is expected from the D-brane picture of BPS fluxons. We also show that the Fourier-transformed soliton of the localized caloron in the zero-period limit exactly coincides with the BPS fluxon.Comment: 30 pages, LaTeX, 3 figures; v3: minor changes, references added; v4: references added, version to appear in PR

    Are Solar Active Regions with Major Flares More Fractal, Multifractal, or Turbulent than Others?

    Full text link
    Multiple recent investigations of solar magnetic field measurements have raised claims that the scale-free (fractal) or multiscale (multifractal) parameters inferred from the studied magnetograms may help assess the eruptive potential of solar active regions, or may even help predict major flaring activity stemming from these regions. We investigate these claims here, by testing three widely used scale-free and multiscale parameters, namely, the fractal dimension, the multifractal structure function and its inertial-range exponent, and the turbulent power spectrum and its power-law index, on a comprehensive data set of 370 timeseries of active-region magnetograms (17,733 magnetograms in total) observed by SOHO's Michelson Doppler Imager (MDI) over the entire Solar Cycle 23. We find that both flaring and non-flaring active regions exhibit significant fractality, multifractality, and non-Kolmogorov turbulence but none of the three tested parameters manages to distinguish active regions with major flares from flare-quiet ones. We also find that the multiscale parameters, but not the scale-free fractal dimension, depend sensitively on the spatial resolution and perhaps the observational characteristics of the studied magnetograms. Extending previous works, we attribute the flare-forecasting inability of fractal and multifractal parameters to i) a widespread multiscale complexity caused by a possible underlying self-organization in turbulent solar magnetic structures, flaring and non-flaring alike, and ii) a lack of correlation between the fractal properties of the photosphere and overlying layers, where solar eruptions occur. However useful for understanding solar magnetism, therefore, scale-free and multiscale measures may not be optimal tools for active-region characterization in terms of eruptive ability or, ultimately,for major solar-flare prediction.Comment: 25 pages, 7 figures, 2 tables, Solar Phys., in pres

    Thermodynamics in f(R)f(R) gravity in the Palatini formalism

    Full text link
    We investigate thermodynamics of the apparent horizon in f(R)f(R) gravity in the Palatini formalism with non-equilibrium and equilibrium descriptions. We demonstrate that it is more transparent to understand the horizon entropy in the equilibrium framework than that in the non-equilibrium one. Furthermore, we show that the second law of thermodynamics can be explicitly verified in both phantom and non-phantom phases for the same temperature of the universe outside and inside the apparent horizon.Comment: 20 pages, no figure, accepted in JCA

    Holographic Dark Energy Model and Scalar-Tensor Theories

    Full text link
    We study the holographic dark energy model in a generalized scalar tensor theory. In a universe filled with cold dark matter and dark energy, the effect of potential of the scalar field is investigated in the equation of state parameter. We show that for a various types of potentials, the equation of state parameter is negative and transition from deceleration to acceleration expansion of the universe is possible.Comment: 11 pages, no figure. To appear in General Relativity and Gravitatio

    Dragon-kings: mechanisms, statistical methods and empirical evidence

    Full text link
    This introductory article presents the special Discussion and Debate volume "From black swans to dragon-kings, is there life beyond power laws?" published in Eur. Phys. J. Special Topics in May 2012. We summarize and put in perspective the contributions into three main themes: (i) mechanisms for dragon-kings, (ii) detection of dragon-kings and statistical tests and (iii) empirical evidence in a large variety of natural and social systems. Overall, we are pleased to witness significant advances both in the introduction and clarification of underlying mechanisms and in the development of novel efficient tests that demonstrate clear evidence for the presence of dragon-kings in many systems. However, this positive view should be balanced by the fact that this remains a very delicate and difficult field, if only due to the scarcity of data as well as the extraordinary important implications with respect to hazard assessment, risk control and predictability.Comment: 20 page

    25 Years of Self-organized Criticality: Concepts and Controversies

    Get PDF
    Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attracted much comment, ranging from the very positive to the polemical. The other papers (Aschwanden et al. in Space Sci. Rev., 2014, this issue; McAteer et al. in Space Sci. Rev., 2015, this issue; Sharma et al. in Space Sci. Rev. 2015, in preparation) in this special issue showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities. This very broad impact, and the necessary process of adapting a scientific hypothesis to the conditions of a given physical system, has meant that SOC as studied in these fields has sometimes differed significantly from the definition originally given by its creators. In Bak’s own field of theoretical physics there are significant observational and theoretical open questions, even 25 years on (Pruessner 2012). One aim of the present review is to address the dichotomy between the great reception SOC has received in some areas, and its shortcomings, as they became manifest in the controversies it triggered. Our article tries to clear up what we think are misunderstandings of SOC in fields more remote from its origins in statistical mechanics, condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfeld’s original papers
    corecore