672 research outputs found
Anomalous roughness with system size dependent local roughness exponent
We note that in a system far from equilibrium the interface roughening may
depend on the system size which plays the role of control parameter. To detect
the size effect on the interface roughness, we study the scaling properties of
rough interfaces formed in paper combustion experiments. Using paper sheets of
different width \lambda L, we found that the turbulent flame fronts display
anomalous multi-scaling characterized by non universal global roughness
exponent \alpha and the system size dependent spectrum of local roughness
exponents,\xi_q, whereas the burning fronts possess conventional multi-affine
scaling. The structure factor of turbulent flame fronts also exhibit
unconventional scaling dependence on \lambda These results are expected to
apply to a broad range of far from equilibrium systems, when the kinetic energy
fluctuations exceed a certain critical value.Comment: 33 pages, 16 figure
Syntheses and characterization of three-and five-coordinate copper(II) complexes based on SNS pincer ligand precursors
A series of tridentate pincer ligands, each possessing two sulfur- and one nitrogen-donor functionalities (SNS), based on a bis-imidazolyl precursor were metallated with CuCl2 to give new tridentate SNS pincer copper(II) complexes [(SNS)CuCl2]. These purple complexes exhibit a five-coordinate pseudo-square pyramidal geometry at the copper center. The [(SNS)CuCl2] complexes were characterized with single crystal X-ray diffraction, electrospray mass spectrometry, EPR spectroscopy, attenuated total reflectance infrared spectroscopy, UVâVis spectroscopy, cyclic voltammetry, and elemental analysis. The EPR spectra are consistent with typical anisotropic Cu(II) signals with four hyperfine splittings in the lower-field region (g||). Various electronic transitions are apparent in the UVâVis spectra of the complexes and originate from d-to-d transitions or various charge transfer transitions. We preformed computational studies to understand the influence that structural constraints internal to our tridentate SNS ligand precursors have on the oxidation state of the resulting bound copper complex. We have determined that a d9 copper(II) metal center is better situated than a d10 copper(I) center to bind our tridentate SNS ligand set when it does not contain an internal CH2 group. Without this methylene linker, the SNS ligand forces the N and S atoms into a T-shaped arrangement about the metal center
Unified View of Scaling Laws for River Networks
Scaling laws that describe the structure of river networks are shown to
follow from three simple assumptions. These assumptions are: (1) river networks
are structurally self-similar, (2) single channels are self-affine, and (3)
overland flow into channels occurs over a characteristic distance (drainage
density is uniform). We obtain a complete set of scaling relations connecting
the exponents of these scaling laws and find that only two of these exponents
are independent. We further demonstrate that the two predominant descriptions
of network structure (Tokunaga's law and Horton's laws) are equivalent in the
case of landscapes with uniform drainage density. The results are tested with
data from both real landscapes and a special class of random networks.Comment: 14 pages, 9 figures, 4 tables (converted to Revtex4, PRE ref added
Establishing a core outcome set for peritoneal dialysis : report of the SONG-PD (standardized outcomes in nephrology-peritoneal dialysis) consensus workshop
Outcomes reported in randomized controlled trials in peritoneal dialysis (PD) are diverse, are measured inconsistently, and may not be important to patients, families, and clinicians. The Standardized Outcomes in Nephrology-Peritoneal Dialysis (SONG-PD) initiative aims to establish a core outcome set for trials in PD based on the shared priorities of all stakeholders. We convened an international SONG-PD stakeholder consensus workshop in May 2018 in Vancouver, Canada. Nineteen patients/caregivers and 51 health professionals attended. Participants discussed core outcome domains and implementation in trials in PD. Four themes relating to the formation of core outcome domains were identified: life participation as a main goal of PD, impact of fatigue, empowerment for preparation and planning, and separation of contributing factors from core factors. Considerations for implementation were identified: standardizing patient-reported outcomes, requiring a validated and feasible measure, simplicity of binary outcomes, responsiveness to interventions, and using positive terminology. All stakeholders supported inclusion of PD-related infection, cardiovascular disease, mortality, technique survival, and life participation as the core outcome domains for PD
Digitise This! A Quick and Easy Remote Sensing Method to Monitor the Daily Extent of Dredge Plumes
Technological advancements in remote sensing and GIS have improved natural resource managersâ abilities to monitor large-scale disturbances. In a time where many processes are heading towards automation, this study has regressed to simple techniques to bridge a gap found in the advancement of technology. The near-daily monitoring of dredge plume extent is common practice using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and associated algorithms to predict the total suspended solids (TSS) concentration in the surface waters originating from floods and dredge plumes. Unfortunately, these methods cannot determine the difference between dredge plume and benthic features in shallow, clear water. This case study at Barrow Island, Western Australia, uses hand digitising to demonstrate the ability of human interpretation to determine this difference with a level of confidence and compares the method to contemporary TSS methods. Hand digitising was quick, cheap and required very little training of staff to complete. Results of ANOSIM R statistics show remote sensing derived TSS provided similar spatial results if they were thresholded to at least 3 mg L-1. However, remote sensing derived TSS consistently provided false-positive readings of shallow benthic features as Plume with a threshold up to TSS of 6 mg L-1, and began providing false-negatives (excluding actual plume) at a threshold as low as 4 mg L-1. Semi-automated processes that estimate plume concentration and distinguish between plumes and shallow benthic features without the arbitrary nature of human interpretation would be preferred as a plume monitoring method. However, at this stage, the hand digitising method is very useful and is more accurate at determining plume boundaries over shallow benthic features and is accessible to all levels of management with basic training
Measurement and Modeling of Particle Radiation in Coal Flames
This work aims at developing a methodology that can provide information of in-flame particle radiation in industrial-scale flames. The method is based on a combination of experimental and modeling work. The experiments have been performed in the high-temperature zone of a 77 kWth swirling lignite flame. Spectral radiation, total radiative intensity, gas temperature, and gas composition were measured, and the radiative intensity in the furnace was modeled with an axisymmetric cylindrical radiation model using Mie theory for the particle properties and a statistical narrow-band model for the gas properties. The in-flame particle radiation was measured with a Fourier transform infrared (FTIR) spectrometer connected to a water-cooled probe via fiber optics. In the cross-section of the flame investigated, the particles were found to be the dominating source of radiation. Apart from giving information about particle radiation and temperature, the methodology can also provide estimates of the amount of soot radiation and the maximum contribution from soot radiation compared to the total particle radiation. In the center position in the flame, the maximum contribution from soot radiation was estimated to be less than 40% of the particle radiation. As a validation of the methodology, the modeled total radiative intensity was compared to the total intensity measured with a narrow angle radiometer and the agreement in the results was good, supporting the validity of the used approach
- âŠ