51 research outputs found

    Genetic effects of Calotropis procera CpTIP1 gene on fiber quality in cotton (Gossypium hirsutum)

    Get PDF
    Background: The importance of cotton crop (Gossypium hirsutum) in textile industry is based on its fiber quality. A number of fiber-specific genes play important role in the development of cotton fiber. Previous studies have demonstrated the importance of genes that are responsible for metabolic functions and their involvement in cotton fiber development.Methods: This study was focused at successful Agrobacterium mediated stable transformation of the fiber gene CpTIP1, isolated from the wild plant Calotropis procera, into cotton variety NIAB-846 for one generation. Results: Transformation efficiency was calculated to be 1.01% for the target gene. Different molecular techniques such as PCR were used for confirmation and Real-Time PCR was used to check the level of quantitative expression of fiber expansin gene in putative transgenic cotton plants. On the base of molecular analysis, results showed higher expression level of fiber gene (CpTIP1) in transgenic plants as compared to the control plants.Conclusion: The results of this study support the idea of improved cotton fiber through genetic modification especially the cotton fiber strength

    In-situ synthesis of 3D ultra-small gold augmented graphene hybrid for highly sensitive electrochemical binding capability

    Get PDF
    The fascinating properties of graphene can be augmented with other nanomaterials to generate hybrids to design innovative applications. Contrary to the conventional methodologies, we showed a novel yet simple, in-situ, biological approach which allowed for the effective growth of gold nanostructures on graphene surfaces (3D Au NS@GO). The morphology of the obtained hybrid consisted of sheets of graphene, anchoring uniform dispersion of ultra-small gold nanostructures of about 2-8 nm diameter. Surface plasmon resonance at 380 nm confirmed the nano-regimen of the hybrid. Fourier transform infrared spectroscopy indicated the utilization of amine spacers to host gold ions leading to nucleation and growth. The exceptional positive surface potential of 55 mV suggest that the hybrid as an ideal support for electrocatalysis. Ultimately, the hybrid was found to be an efficient receptor material for electrochemical performance towards the binding of uric acid which is an important biomolecule of human metabolism. The designed material enabled the detection of uric acid concentrations as low as 30 nM. This synthesis strategy is highly suitable to design new hybrid materials with interesting morphology and outstanding properties for the identification of clinically relevant biomolecules

    Science Behind Cotton Transformation

    Get PDF
    The introduction of foreign genes into plant has made possible to bring out desired traits into crop of our own interest. With the advancement in cell biology, regeneration of plants from single cell and advent of different procedures for gene transformation to the plants have opened new avenues for the efficient and applicable implementation of biotechnology for the modifications of desired crop characteristics. Identifications and isolation of different genes for various traits from different organisms have made possible to get the crop plants with modified characters. Over time improvement has been made in transformation technology depending upon the crop of interest. The efficiency of plant transformation has been increased with advances in plant transformation vectors and methodologies, which resulted in the improvement of crops. A detailed discussion on advanced techniques for genetic modification of plants with their handy use and limitation has been focused in this chapter

    Human Cryptosporidiosis: An insight into Epidemiology, Modern Diagnostic Tools and Recent Drug Discoveries

    Get PDF
    Cryptosporidiosis is an emerging food and water borne zoonotic disease, which is caused by genusCryptosporidium. The first Cryptosporidium spp. was isolated from mice in 1907 and gained importance when it was found in an HIV positive patient. It usually causes self-limiting diarrhea in young children and immunocompetent patients. However, it may lead to chronic diarrhea with life threatening condition in immunocompromised patients. Other complications related to this transmittable infection may include respiratory problems, skin rashes and headache. HIV/AIDS patients are highly susceptible host for this parasite. Cryptosporidium parvum and Cryptosporidium hominis are the known pathogenic species, prevalent among humans and they are being transmitted through contaminated food and water. Usually, the diagnosis of Cryptosporidium spp. is dependent on microscopic technique in many countries, which has a low sensitivity and specificity leading to false positive results. However, for a step forward to successful epidemiological studies, advanced techniques (Serological and DNA-based) provide us the better ways of diagnosis with more sensitivity and specificity. Furthermore, no antiparasitic drug has found to be effective againstCryptosporidium spp. except Nitazoxanide which is FDA-approved and effective only when administered along with antiretroviral therapy. In this regard, present review summarizes the various epidemiological studies conducted around the globe along with modern diagnostic tools and the suitable treatment available now a days. This systemized review will help the scientists to better understand all the aspects of cryptosporidiosis at one platform which may help in designing surveillance studies through selection of sensitive diagnostic techniques. The new drugs mentioned in this review may also help to better control this parasite in humans, especially immunocompromised individuals

    Cloning and chloroplast-targeted expression studies of insect-resistant gene with ricin fusion-gene under chloroplast transit peptide in cotton

    Get PDF
    Background: Transgenic plants inhabiting single Bt gene are prone to develop insect resistance and this resistance has been reported in case of some important yield-devastating insect larvae of commercial crops, such as cotton and rice. Therefore, it has become essential to adapt new strategies to overcome the problem of insect resistance and these new strategies should be sophisticated enough to target such resistant larvae in broad spectrum. Among these, plants may be transformed with Bt gene tagged with some fusion-protein gene that possesses lectin-binding capability to boost the binding sites for crystal protein gene within insect mid-gut in order to overcome any chances of insect tolerance against Bt toxin. Enhanced chloroplast-targeted Bt gene expression can also help in the reduction of insect resistance. Results: In the present investigation, a combined effect of both these strategies was successfully used in cotton ( G. hirsutum ). For this purpose, plant expression vector pKian-1 was created, after a series of cloning steps, carrying Cry1Ac gene ligated with chloroplast transit peptide towards N-terminal and Ricin B-Chain towards C-terminal, generating TP-Cry1Ac-RB construct. Conclusions: Efficacy of pKian-1 plasmid vector was confirmed by in-planta Agrobacterium -mediated leaf GUS assay in tobacco. Cotton (G. hirsutum) local variety MNH-786 was transformed with pKian-1 and the stable integration of TP-Cry1Ac-RB construct in putative transgenic plants was confirmed by PCR; while fusion-protein expression in cytosol as well as chloroplast was substantiated by Western blot analysis. Whereas, confocal microscopy of leaf-sections of transgenic plants exposed that hybrid-Bt protein was expressing inside chloroplasts

    Early ultrasound surveillance of newly-created haemodialysis arteriovenous fistula

    Get PDF
    IntroductionWe assess if ultrasound surveillance of newly-created arteriovenous fistulas (AVFs) can predict nonmaturation sufficiently reliably to justify randomized controlled trial (RCT) evaluation of ultrasound-directed salvage intervention.MethodsConsenting adults underwent blinded fortnightly ultrasound scanning of their AVF after creation, with scan characteristics that predicted AVF nonmaturation identified by logistic regression modeling.ResultsOf 333 AVFs created, 65.8% matured by 10 weeks. Serial scanning revealed that maturation occurred rapidly, whereas consistently lower fistula flow rates and venous diameters were observed in those that did not mature. Wrist and elbow AVF nonmaturation could be optimally modeled from week 4 ultrasound parameters alone, but with only moderate positive predictive values (PPVs) (wrist, 60.6% [95% confidence interval, CI: 43.9–77.3]; elbow, 66.7% [48.9–84.4]). Moreover, 40 (70.2%) of the 57 AVFs that thrombosed by week 10 had already failed by the week 4 scan, thus limiting the potential of salvage procedures initiated by that scan’s findings to alter overall maturation rates. Modeling of the early ultrasound characteristics could also predict primary patency failure at 6 months; however, that model performed poorly at predicting assisted primary failure (those AVFs that failed despite a salvage attempt), partly because patency of at-risk AVFs was maintained by successful salvage performed without recourse to the early scan data.ConclusionEarly ultrasound surveillance may predict fistula maturation, but is likely, at best, to result in only very modest improvements in fistula patency. Power calculations suggest that an impractically large number of participants (>1700) would be required for formal RCT evaluation

    Early Ultrasound Surveillance of Newly-Created Hemodialysis Arteriovenous Fistula

    Get PDF
    Introduction: We assess if ultrasound surveillance of newly-created arteriovenous fistulas (AVFs) can predict nonmaturation sufficiently reliably to justify randomised controlled trial (RCT) evaluation of ultrasounddirected salvage intervention. Methods: Consenting adults underwent blinded fortnightly ultrasound scanning of their AVF after creation, with scan characteristics that predicted AVF non-maturation identified by logistic regression modelling. Results: Of 333 AVFs created, 65.8% matured by 10 weeks. Serial scanning revealed that maturation occurred rapidly, whereas consistently lower fistula flow rates and venous diameters were observed in those that did not mature. Wrist and elbow AVF non-maturation could be optimally modelled from the week four ultrasound parameters alone, but with only moderate positive predictive values (wrist, 60.6% (95% CI 43.9 – 77.3); elbow, 66.7% (48.9 - 84.4)). Moreover, 40 (70.2%) of the 57 AVFs that thrombosed by week 10 had already failed by the week 4 scan, thus limiting the potential of salvage procedures initiated by that scan’s findings to alter overall maturation rates. Modelling of the early ultrasound characteristics could also predict primary patency failure at 6 months, but that model performed poorly at predicting assisted primary failure (those AVFs that failed despite a salvage attempt), partly because patency of at-risk AVFs was maintained by successful salvage performed without recourse to the early scan data. Conclusions: Early ultrasound surveillance may predict fistula maturation, but is likely, at best, to result in only very modest improvements in fistula patency. Power calculations suggest that an impractically large number of participants (>1700) would be required for formal RCT evaluation

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    In-situ synthesis of 3D ultra-small gold augmented graphene hybrid for highly sensitive electrochemical binding capability

    Get PDF
    The fascinating properties of graphene can be augmented with other nanomaterials to generate hybrids to design innovative applications. Contrary to the conventional methodologies, we showed a novel yet simple, in-situ, biological approach which allowed for the effective growth of gold nanostructures on graphene surfaces (3D Au NS@GO). The morphology of the obtained hybrid consisted of sheets of graphene, anchoring uniform dispersion of ultra-small gold nanostructures of about 2-8 nm diameter. Surface plasmon resonance at 380 nm confirmed the nano-regimen of the hybrid. Fourier transform infrared spectroscopy indicated the utilization of amine spacers to host gold ions leading to nucleation and growth. The exceptional positive surface potential of 55 mV suggest that the hybrid as an ideal support for electrocatalysis. Ultimately, the hybrid was found to be an efficient receptor material for electrochemical performance towards the binding of uric acid which is an important biomolecule of human metabolism. The designed material enabled the detection of uric acid concentrations as low as 30 nM. This synthesis strategy is highly suitable to design new hybrid materials with interesting morphology and outstanding properties for the identification of clinically relevant biomolecules
    corecore