118 research outputs found

    A ray-trace analysis of X-ray multilayer Laue lenses for nanometer focusing

    Full text link
    Thick diffractive optical elements offer a promising way to achieve focusing or imaging at a resolution approaching 1 nm for X-ray wavelengths shorter than about 0.1 nm. Efficient focusing requires that these are fabricated with structures that vary in period and orientation so that rays obey Bragg's law over the entire lens aperture and give rise to constructive interference at the focus. Here the analysis method of ray-tracing of thick diffractive optical elements is applied to such lenses to optimise their designs and to investigate their operating and manufacturing tolerances. Expressions are provided of the fourth-order series expansions of the wavefront aberrations and transmissions of both axi-symmetric lenses and pairs of crossed lenses that each focuses in only one dimension like a cylindrical lens. We find that aplanatic zone-plate designs, whereby aberrations are corrected over a large field of view, can be achieved by axi-symmetric lenses but not the crossed lenses. We investigate the performance of 1 nm-resolution lenses with focal lengths of about 1 mm and show their fields of view are mainly limited by the acceptance angle of Bragg diffraction, and that aberrations can limit the performance of lenses with longer focal lengths. We apply the ray-tracing formalism for a tolerancing analysis of imperfect lenses and examine some strategies for the correction of their aberrations.Comment: 44 pages, 15 figure

    Spin precession mapping at ferromagnetic resonance via nuclear resonant scattering

    Full text link
    We probe the spin dynamics in a thin magnetic film at ferromagnetic resonance by nuclear resonant scattering of synchrotron radiation at the 14.4 keV resonance of 57^{57}Fe. The precession of the magnetization leads to an apparent reduction of the magnetic hyperfine field acting at the 57^{57}Fe nuclei. The spin dynamics is described in a stochastic relaxation model adapted to the ferromagnetic resonance theory by Smit and Beljers to model the decay of the excited nuclear state. From the fits of the measured data the shape of the precession cone of the spins is determined. Our results open a new perspective to determine magnetization dynamics in layered structures with very high depth resolution by employing ultrathin isotopic probe layers

    Femtosecond x-ray diffraction from an aerosolized beam of protein nanocrystals

    Get PDF
    We demonstrate near-atomic-resolution Bragg diffraction from aerosolized single granulovirus crystals using an x-ray free-electron laser. The form of the aerosol injector is nearly identical to conventional liquid-microjet nozzles, but the x-ray-scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. This approach provides a route to study the weak diffuse or lattice-transform signal arising from small crystals. The high speed of the particles is particularly well suited to upcoming MHz-repetition-rate x-ray free-electron lasers

    Rapid sample delivery for megahertz serial crystallography at X-ray FELs

    Get PDF
    Liquid microjets are a common means of delivering protein crystals to the focus of X-ray free-electron lasers (FELs) for serial femtosecond crystallography measurements. The high X-ray intensity in the focus initiates an explosion of the microjet and sample. With the advent of X-ray FELs with megahertz rates, the typical velocities of these jets must be increased significantly in order to replenish the damaged material in time for the subsequent measurement with the next X-ray pulse. This work reports the results of a megahertz serial diffraction experiment at the FLASH FEL facility using 4.3 nm radiation. The operation of gas-dynamic nozzles that produce liquid microjets with velocities greater than 80 m s-1 was demonstrated. Furthermore, this article provides optical images of X-ray-induced explosions together with Bragg diffraction from protein microcrystals exposed to trains of X-ray pulses repeating at rates of up to 4.5 MHz. The results indicate the feasibility for megahertz serial crystallography measurements with hard X-rays and give guidance for the design of such experiments

    Segmented flow generator for serial crystallography at the European X-ray free electron laser

    Get PDF
    Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported

    Применение программного продукта «Яндекс.Сервер» для организации поиска в электронном каталоге библиотеки

    Get PDF
    The huge amounts of information accumulated by libraries in recent years put before developers a problem of the organization of fast and qualitative search which decision is possible with the use of modern search tools of Web-technology. The author examines one of these tools the software product “Yandex. Server”, allowing to organize optimum search in the electronic library catalog. The software product “Yandex. Server” gives a chance to carry out optimum search taking into account morphology of Russian and English languages, as well as the various logical conditions that provides effective and flexible search in the electronic library catalog.Накопленные библиотеками за последние годы огромные массивы информации ставят перед разработчиками задачу организации быстрого и качественного поиска, решение которой возможно с использованием современных поисковых инструментов веб-технологии. Автор рассматривает один из таких инструментов - программный продукт «Яндекс. Сервер», позволяющий организовать оптимальный поиск в электронном каталоге библиотеки с учетом морфологии русского и английского языков, а также различных логических условий

    On the Properties of WC/SiC Multilayers

    No full text
    A study of the materials properties of WC/SiC multilayer coatings is presented. We investigated the dependence of interface and surface roughness, intrinsic stress, microstructure, chemical composition, and stoichiometry as a function of multilayer period and in some cases compared these to W/SiC multilayer systems. The WC/SiC material pair forms multilayers with extremely smooth and sharp interfaces and both materials remain amorphous over a wide range of thicknesses. These properties are desirable for multilayer-based high-resolution diffractive x-ray optics, such as multilayer Laue lenses (MLLs), which require very thick films in which the layer spacing varies considerably. Thermal and structural stability studies show that WC/SiC multilayers have exceptional thermal stability, making this an extremely robust and favorable material pair for MLLs and other multilayer-based X-ray optical elements

    A ray-trace analysis of X-ray multilayer Laue lenses for nanometer focusing

    No full text
    Thick diffractive optical elements offer a promising way to achieve focusing or imaging at a resolution approaching 1 nm for X-ray wavelengths shorter than about 0.1 nm. Efficient focusing requires that these are fabricated with structures that vary in period and orientation so that rays obey Bragg's law over the entire lens aperture and give rise to constructive interference at the focus. Here the analysis method of ray-tracing of thick diffractive optical elements is applied to such lenses to optimise their designs and to investigate their operating and manufacturing tolerances. Expressions are provided of the fourth-order series expansions of the wavefront aberrations and transmissions of both axi-symmetric lenses and pairs of crossed lenses that each focuses in only one dimension like a cylindrical lens. We find that aplanatic zone-plate designs, whereby aberrations are corrected over a large field of view, can be achieved by axi-symmetric lenses but not the crossed lenses. We investigate the performance of 1 nm-resolution lenses with focal lengths of about 1 mm and show their fields of view are mainly limited by the acceptance angle of Bragg diffraction, and that aberrations can limit the performance of lenses with longer focal lengths. We apply the ray-tracing formalism for a tolerancing analysis of imperfect lenses and examine some strategies for the correction of their aberrations
    corecore