94 research outputs found

    Geometry and Alignment Requirements for the LHC Main Dipole

    Get PDF
    The 15 m long LHC superconducting dipole magnets, which contain two beam channels in a common mechanical structure, produce a magnetic field of 8.3 T required to deflect protons with 7 TeV/c momentum along a circular trajectory in the already existing LEP tunnel. The dipoles are bent in their horizontal plane to provide the largest possible mechanical aperture to the circulating beam. This paper describes the theoretical geometry of the dipole cold mass and the alignment requirements, which are imposed to satisfy the demands of LHC machine operation. A short description of the measuring and alignment procedures and of the measuring instruments is given. Results of a small series of prototype cold masses are presented and discussed

    The LHC Dipole Geometry as Built in Industry

    Get PDF
    The LHC dipoles magnets are produced in 5 industrial production sites in Europe. The production is well underway and more than half of the total quantity has been delivered to CERN. One of the important characteristics of the dipole magnets is their geometry. To achieve the requested mechanical tolerances on the magnets, which are 15 m long and have a 28 t mass, the final assembly operations includes precise optical measurements. To ensure the good quality and high production rate, the final assembly procedure has been automated as much as possible. The authors report here about the assembly procedure, the features of the software that guides the optical measurements (and consequently the assembly operations) and the results obtained on the geometry in the different sites

    Mechanical Design of the SMC (Short Model Coil) Dipole Magnet

    Get PDF
    The Short Model Coil (SMC) working group was set in February 2007 within the Next European Dipole (NED) program, in order to develop a short-scale model of a Nb3_{3}Sn dipole magnet. The SMC group comprises four laboratories: CERN/TE-MSC group (CH), CEA/IRFU (FR), RAL (UK) and LBNL (US). The SMC magnet was originally conceived to reach a peak field of about 13 T on conductor, using a 2500 A/mm2 Powder-In-Tube (PIT) strand. The aim of this magnet device is to study the degradation of the magnetic properties of the Nb3_{3}Sn cable, by applying different level of pre-stress. To fully satisfy this purpose, a versatile and easy-to-assemble structure has to be realized. The design of the SMC magnet has been developed from an existing dipole magnet, the SD01, designed, built and tested at LBNL with support from CEA. In this paper we will describe the mechanical optimization of the dipole, starting from a conceptual configuration based on a former magnetic analysis. Two and three-dimensional Finite Element Method (FEM) models have been implemented in ANSYS™ and in CAST3M, aiming at setting the mechanical parameters of the dipole magnet structure, thus fulfilling the design constraints imposed by the materials

    Training Study on Superconducting Coils of the LHC Sextupole Corrector Magnet

    Get PDF
    A study on a single sextupole coil, working under the same conditions as the full magnet, has been made to evaluate the effect of the azimuthal pre-compression and the longitudinal pre-tension on the training of superconducting coils. A testing device has been used that allows to test individual sextupole type coils in a cryostat at 4.2 K by exerting variable pre-stresses in situ. The paper describes the tests made with this device and discusses the results obtained for different pre-stress conditions and for different central island materials, in particular G-10 and stainless steel

    Training Tests on Single Superconducting Coils of Sextupolar Correctors for LHC

    Get PDF
    The precompression of the coils is considered to be one of the most important parameters to achieve good training performance in a superconducting magnet. In order to better understand and optimise precompression, a test device has been created that allows to test individual coils in a cryostat at 4.2 K exerting a variable precompression in situ. The paper describes the design, construction and calibration of the testing device, the test instrumentation and the results of the first experiments with sextupolar coils. This work was realised in the framework of a collaboration between CERN and CEDEX/Spain

    Electrical Integrity Tests during Production of the LHC Dipoles

    Get PDF
    For the LHC dipoles, mandatory electrical integrity tests are performed to qualify the cold mass (CM) at four production stages: individual pole, collared coil, CM before end cover welding and final CM. A description of the measurement equipment and its recent development are presented. After passing the demands set out in the specification, the results of the tests are transmitted to CERN where they are further analyzed. The paper presents the most important results of these measurements. We also report a review of the electrical non-conformities encountered e.g. interturn shorts and quench heater failure, their diagnostic and the cures

    LHC Superconducting Dipole Production Follow-up: Results of Audit on QA Aspects in Industry

    Get PDF
    The manufacturing of the 1232 Superconducting Main Dipoles for LHC is under way at three European Contractors: Alstom-Jeumont (Consortium), Ansaldo Superconduttori Genova and Babcock Noell Nuclear. The manufacturing is proceeding in a very satisfactory way and in March 2005 the mid production was achieved. To intercept eventually âワweak pointsâ of the production process still present and in order to make a check of the Quality Assurance and Control in place for the series production, an Audit action was launched by CERN during summer-fall 2004. Aspects like: completion of Production and Quality Assurance documentation, structure of QC Teams, traceability, calibration and maintenance for tooling, incoming components inspections, were checked during a total of seven visits at the five different production sites. The results of the Audit in terms of analysis of âワsystematicâ and âワrandomâ problems encountered as well as corrective actions requested are presented

    Quality Control Techniques Applied to the Large Scale Production of Superconducting Dipole Magnets for LHC

    Get PDF
    The LHC accelerator, under construction at CERN, is characterized by the use on a large scale of high field superconducting dipoles: the 27-km ring requires 1232 15-m long dipole magnets designed for a peak field of 9 T. The coils are wound with Rutherford-type cable based on copper-stabilized Nb-Ti superconductors and will be operated at 1.9 K in pressurized superfluid helium. The challenge that had to be faced has been an efficient, cost-effective and reproducible mass production to very tight tolerances: the field quality must be better than 10-4 and the geometry of the cold bore tube and magnet controlled to 0.1 mm over the whole length, any deviation being liable to induce delays and significant cost increase. This paper presents the main methods and tools chosen to face successfully this challenge: some methods were foreseen in the technical specification, others were implemented based on the experience gained in several years of fabrication

    Design, Manufacturing Status, First Results of the LHC Main Dipole Final Prototypes and Steps towards Series Manufacture

    Get PDF
    This paper reports about the program of six LHC superconducting main dipole final prototypes and the steps towards series manufacture. The above program, launched in summer 1998, relies on collared coils manufactured by industry and cold masses assembled at the CERN Magnet Assembly Facility. Following design, stability and robustness studies, the magnet design for series manufacture features a "6-block" coil and austenitic steel collars. A general description of the magnet with its main components is given and the main working parameters and the most important manufacturing features are presented. Results of mechanical and magnetic measurements are given as well as the performances of the first prototype. A comparison with results from the previous generation of dipole magnet models and prototypes is also made. Finally an outlook towards series manufacture is given

    Description of the Main Features of the Series Production of the LHC Main Dipole Magnets

    Get PDF
    The series production of the LHC main dipole magnets was completed in November 2006. This paper presents the organization implemented at CERN and the milestones fixed to fullfil the technical requirements and to respect the master schedule of the machine installation. The CERN organization for the production follow-up, the quality assurance and the magnet testing, as well as the organization of the three main contractors will be described. A description of the design work and procurement of most of the specific heavy tooling and key components will be given with emphasis on the advantages and drawbacks
    • …
    corecore