18 research outputs found

    Neuraminidase Inhibitors and Hospital Length of Stay: A Meta-analysis of Individual Participant Data to Determine Treatment Effectiveness Among Patients Hospitalized With Nonfatal 2009 Pandemic Influenza A(H1N1) Virus Infection

    Get PDF
    © The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: [email protected]. BACKGROUND: The effect of neuraminidase inhibitor (NAI) treatment on length of stay (LoS) in patients hospitalized with influenza is unclear. METHODS: We conducted a one-stage individual participant data (IPD) meta-analysis exploring the association between NAI treatment and LoS in patients hospitalized with 2009 influenza A(H1N1) virus (A[H1N1]pdm09) infection. Using mixed-effects negative binomial regression and adjusting for the propensity to receive NAI, antibiotic, and corticosteroid treatment, we calculated incidence rate ratios (IRRs) and 95% confidence intervals (CIs). Patients with a LoS o

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Effects of cooling rate on the glass formation process and the microstructural evolution of Silver mono-component metallic glass

    No full text
    International audienceIn this study, using molecular dynamics simulations in combination with the embedded-atom approach, we investigate the effect of cooling rate on the microstructural evolution and the glass formation process of Silver monatomic metallic glass. In order to accomplish our investigation, we have utilised a variety of analytical techniques, including the pair distribution function, the bond angle distribution, the Voronoi tessellation analysis, the coordination number, and the five-fold symmetry. The splitting of the second peak in the pair distribution function during the cooling process confirms that glass formation occurs. Via the Went-Abraham parameter, we have found that a faster cooling rate leads to a higher glass transition temperature , and a less relaxed glass has a lower density due to its greater free volume and disordered structure. In the same context, the bond angle distribution revealed that the cooling rate clearly influences the icosahedral short-range order in the quenched system, and the Voronoi tessellation analysis indicated that the percentage of mixed-like and icosahedral-like clusters grows as the cooling rate increases. Furthermore, the coordination number indicated that when the temperature drops throughout the cooling process, the local environment and topological structure of the amorphous Silver change. Lastly, we have also revealed that the five-fold symmetry controls the formation of the amorphous structure and that the highest cooling rate yields the greatest amount of icosahedral-like clusters in the vitreous phase, implying that fast cooling rates subserve the formation of glassy states with icosahedral-like features

    Electrocatalytic Activity of Asymmetrical Cobalt Phthalocyanines in the Presence of N Doped Graphene Quantum Dots: The Push‐pull Effects of Substituents

    No full text
    A series of Co phthalocyanine (CoPc) derivatives and their respective nitrogen doped graphene quantum dot conjugates were used as catalysts towards the electrooxidation of hydrazine. Using a glassy carbon electrode as a support for the electrocatalysts, through cyclic voltammetry and chronoamperometry, the effects of combining the CoPcs with the nitrogen doped graphene quantum dots (NGQDs) were studied. The general observations made were that the NGQDs improve the catalytic activity of the CoPcs in both the p-p stacked and covalently linked conjugates by increasing the sensitivities and lowering the limits of detection with values as low as 0.43 mM being recorded
    corecore