46 research outputs found
The chemical characteristic and distribution of brassinosteroids in plants
Brassinosteroids represent a class of plant hormones with high-growth promoting activity. They are found at low levels in pollen, anthers, seeds, leaves, stems, roots, flowers, grain, and young vegetative tissues throughout the plant kingdom. Brassinosteroids are a family of about 60 phytosteroids. The article gives a comprehensive survey on the hitherto known brassinosteroids isolated from plants. The chemical characteristic of brassinosteroids is also presented
Fitoremediacja - alternatywa na czyste środowisko
Postęp przemysłowy i cywilizacyjny, oprócz bezsprzecznych korzyści, niesie za sobą degradację środowiska. Obiecujące możliwości w procesach remediacji – usuwania różnego rodzaju zanieczyszczeń z atmosfery, gleby i wody daje zastosowanie roślin. W fitoremediacji wykorzystuje się naturalną zdolność wybranych gatunków roślin do wzrostu i rozwoju w ekosystemach skażonych substancjami organicznymi i nieorganicznymi, a także ich pobierania i detoksykacji. Naturalne fitoremediatory powinny charakteryzować się rozwiniętym systemem korzeniowym, szybkim wzrostem, dużą produkcją biomasy, tolerancją na skażenia oraz zdolnością akumulowania kilku zanieczyszczeń jednocześnie. Ze względu na sposób, w jaki rośliny wpływają na oczyszczanie skażonych ekosystemów, wyróżnia się główne techniki fitoremediacji: fitoekstrakcję, fitodegradację, fitostabilizację, fitoewaporację i ryzofiltrację. W rzeczywistości jednak mechanizmy usuwania czy detoksykacji zanieczyszczeń są bardziej złożone i często wynikają z połączenia różnego rodzaju metod. Fitoremediacja – jak każda metoda – posiada niewątpliwe zalety, jak również pewne ograniczenia, ale generalnie uważana jest za metodę przyjazną środowisku, tanią, mało inwazyjną i akceptowalną społecznie. Technika ta jest powszechnie postrzegana jako alternatywa dla ingerujących w środowisko metod fizyko-chemicznych, które mogą przyczyniać się do wtórnych zanieczyszczeń gleby, wody oraz powietrza. Fitoremediacja znajduje szerokie zastosowanie na zdegradowanych terenach poprzemysłowych, gdzie pomaga przywrócić je do takiego stanu, aby mogły być użytkowane jako obszary rekreacyjne lub mieszkalne.Wojewódzki Fundusz Ochrony Środowiska i Gospodarki Wodnej w Białymstok
Wpływ brassinosteroidów na kultury glonu Chlorella vulgaris poddane działaniu wybranych fitohormonów i czynników stresowych
Zdigitalizowano i udostępniono w ramach projektu pn. Rozbudowa otwartych zasobów naukowych Repozytorium Uniwersytetu w Białymstoku, dofinansowanego z programu „Społeczna odpowiedzialność nauki” Ministra Edukacji i Nauki na podstawie umowy SONB/SP/512497/2021.Wydanie publikacji sfinansowane przez JM Rektora Uniwersytetu w BiałymstokuAhmad l., Hamid T., Fatima M., Chand H. S., Jain S. K., Athar M., Raisuddin S. (2000). Induction of hepatic antioxidants in freshwater catfish (Channa punctuatus Bloch) is a biomarker of paper mill effluent exposure. Bioch. Biophys. Acta 1523: 37-48.Almeida J. M., Fidalgo F., Confraria A., Santos A., Pires H., Santos l. (2005). Effect of hydrogen peroxide on catalase gene expression, isoform activities and levels in leaves of potato sprayed with homobrassinolide and ultrastructural changes in mesophyll cells. Funct. Plant. Biol. 32: 707-720.Apel K., Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 55: 373-399.Arteca R. N., Bachman J. M., Mandava N. B. (1988). Effects of indole-3-acetic acid and brassinosteroid on ethylene biosynthesis in etiolated mung bean hypocotyl segments. J. Plant Physiol. 133: 430-435.Arteca R. N., Tsai D-S., Schlagnhaufer C., Mandava N. B. (1983). The effect of brassinosteroid on auxin-induced ethylene production by etiolated mung bean segments. Physiol. Plant. 59: 539-544.Asami T., Min Y. K., Nagata N., Yamagishi K., Takatsuto S., Fujioka S., Murofushi N., Yamaguchi l., Yoshida S. (2000). Characterization of brassinazole, a triazoletype brassinosteroid biosynthesis inhibitor. Plant Physiol. 123: 93-99.Asami T., Yoshida S. (1999). Brassinosteroid biosynthesis inhibitors. Trends Plant Sci. 4: 348 -353.Azpiroz R., Wu Y., LoCascio J. C., Feldmann K. A. (1998). An Arabidopsis brassinosteroiddependent mutant is blocked in celI elongation. Plant Cell 10: 219-230.Bajguz A. (1997). Zależność między strukturą chemiczną i aktywnością biologiczną brassinosteroidów w glonie Chlorella vulgaris. Uniwersytet Warszawski, Filia w Białymstoku. Praca doktorska.Bajguz A. (1999). Działanie brassinosteroidów na wzrost i rozwój roślin. Kosmos 48: 75-85.Bajguz A. (2000a). Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol. Biochem. 38: 209-215.Bajguz A. (2000b). Blockade of heavy metais accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol. Biochem. 38: 797-801.Bajguz A. (2000c). Ekdysteroidy W roślinach. Kosmos 49: 169-178.Bajguz A. (2002). Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. J . Plant Physiol. 159: 321-324.Bajguz A. (2005). Brassinosteroids: from distribution to metabolism in plants. [W:) Sharma S. K., Govil J. N., Singh V.K. (red.). Recent Progress in Medicinal Plants. Vol. 10. Phytotherapeutics. Studium Press LLC, Houston, s. 25-63.Bajguz A. (2007). Metabolism of brassinosteroids in plants. Plant Physiol. Biochem. 45: 95-107.Bajguz A., Asami T. (2004). Effects of brassinazole, an inhibitor of brassinosteroid biosynthesis, on light- and dark-grown Chlorella vulgaris. Planta 218: 869-877.Bajguz A., Asami T. (2005). Suppression of Wolffia arrhiza growth by brassinazole, an inhibitor of brassinosteroid biosynthesis and its restoration by endogenous 24-epibrassinolide. Phytochemistry 66: 1787-1796.Bajguz A., Czerpak R. (1996). Effect of brassinosteroids on growth and proton extrusion in the alga Chlorella vulgaris Beijerinck (Chlorophyceae). J. Plant Growth Regul. 15: 153-156.Bajguz A., Czerpak R. (1998). Physiological and biochemical role of brassinosteroids and their structure-activity relationship in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). J. Plant Growth Regul. 17: 131-139.Bajguz A., Dinan L. (2004). Effects of ecdysteroids on Chlorella vulgaris. Physiol. Plant. 121: 349-357.Bajguz A., Godlewska-Zylkiewicz B. (2004). Protective role of 20 -hydroxyecdysone against lead stress in Chlorella vulgaris cultures. Phytochemistry 65: 711-720.Bajguz A., Tretyn A. (2003a). Brassinosteroidy - hormony roślinne. Wyd. UMK, Toruń.Bajguz A., Tretyn A. (2003b). The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62: 1027-1046.Baldi B. G., Maher B . R., Slovin J. P., Cohen J. D. (1991). Stable isotope labeling, in vivo, of D - and L-tryptophan pools in Lemna gibba and the low incorporation of label into indole-3-acetic acid. Plant Physiol. 95: 1203-1208.Baranowska-Morek A. (2003). Roślinne mechanizmy tolerancji na toksyczne działanie metali ciężkich. Kosmos 52: 283-298.Barbarino E., Lourenço S. O. (2005). An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J. Appl. Phycol. 17: 447-460.Barciszewski J., Siboska G., Clark B . F. C., Rattan S. I. S. (2000). Cytokinin formation by oxidative metabolism. J. Plant Physiol. 158: 587-588.Barnes S. A., McGrath R. B., Chua N.-H. (1997). Light signal transduction in plants. Trends Cell. BioI. 7: 21-26.Bartel B., LeClere S., Magidin M., Zolman B. K. (2001). Inputs to the active indole-3-acetic acid pool: de nova synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation. J. Plant Growth Regul. 20: 198-216.Bartosz G. (2006). Druga twarz tlenu. Wolne rodniki w przyrodzie. Wyd. Naukowe PWN, Warszawa.Becerril J. M., Munoz-Rueda A., Aparicio-Tejo P., Gonzales-Murua C. (1988). The effects of cadmium and lead on photosynthetic electron transport in clover and lucerne. Plant Physiol. Biochem. 26: 357-363.Becker E. W. (1994). Microalgal biotechnology and microbiology. Cambridge Acad. Publ., London.Bedell G. W., Darnall D. W. (1990). Immobilization of nonviable, biosorbent, algal biomas s for the recovery of metal ions. [W:] Volesky B. (red.). Biosorption of heavy metais. CRS Press, Boca Raton, s. 313-326.Bilgrami K . S., Kumar S. (1997). Effects of copper, lead and zinc on phytoplankton growth. Biol. Plant. 39: 315-317.Binns A. N. (1994). Cytokinin accumulation and action: biochemical, genetic and molecular approaches. Annu. Rev. Plant PhysioI. Plant Mol . Biol. 45: 173-196.Bishop G. J., Nomura T., Yokota T., Harrison K., Noguchi T., Fujioka S., Takatsuto S., Jones J. D. G., Kamiya Y. (1999). The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc. Natl. Acad. Sci. USA 96: 1761-1766.Bohnert H. J., Nelson D. E., Jensen R. G. (1995). Adaptations to environmental stresses. Plant Cell 7: 1099-1111.Braun P., Wild A. (1984). The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. J. Plant Physiol. 116 : 189-196.Bray E. A., Bailey-Serres J., Weretilnyk E. (2000). Responses to abiotic stresses. [W:] Buchanan B., Gruissem W., Jones R. (red.). Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, s. 1158-1203.Brosa C. (1999). Biological effects of brassinolide. Crit. Rev. Biochem. Mol. Biol. 34: 339-358.Burzyński M. (1987). Wpływ ołowiu na procesy fizjologiczne roślin. Wiad. Bot. 31: 87-96.Cakmak L, Horst W. J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83: 463-468.Campanoni P., Nick P. (2005). Auxin-dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiol. 1 37: 939-948.Canter-Lund H., Lund J. W. G. (1996). Freshwater algae. Their microscopic world explored. BioPress, Hong-Kong.Cao H., Chen S. (1995). Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene. Plant Growth Regul. 16: 189-196.Carr H. P., Carińo F. A., Yang M. S., Wong M. H. (1998). Characterization of the cadmium-binding capacity of Chlorella vulgaris. Bull. Environ. Contam. Toxicol. 60: 433-440.Catterou M., Dubois F., Schaller H., Aubanelle L., Vilcot B., Sangwan-Norreel B. S., Sangwan R. S. (2001a). Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. I. Molecular, cellular and physiological characterization of the Arabidopsis bull mutant, defective in the Δ7-sterol-C5-desaturation step leading to brassinosteroid biosynthesis. Planta 212: 659-672.Catterou M., Dubois F., Schaller H., Aubanelle L., Vilcot B., Sangwan-Norreel B. S., Sangwan R. S. (2001b). Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. Effects of brassinosteroids on microtubules and cell elongation in the bull mutant. Planta 212: 673-683.Cerana R., Bonetti A., Marre M. T., Romani G., Marre E. (1983). Effects of a brassinosteroid on growth and electrogenic proton extrusion in Azuki bean epicotyls. Physiol. Plant. 59: 23-27.Cerana R., Lado P., Anastasia M., Ciuffreda P., Allevi P. (1984). Regulating effects of brassinosteroids and of sterols on growth and H+ secretion in maize roots. Z. Pflanzenphysiol. Bd. 114: 221-225.Cerana R., Spelta M., Bonetti A., Lado P. (1985). On the effects of cholesterol on H+ - extrusion and on growth in maize root segments: comparison with brassinosteroid. Plant Sci. 38: 99-105.Chen J.-G. (2001). Dual auxin signaling pathways control cell elongation and division. J. Plant Growth Regul. 20: 255-264.Chen K .-H., Miller A. N., Patterson G. W., Cohen J. D. (1988). A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol. 86: 822-825.Choe S. (2006). Brassinosteroid biosynthesis and inactivation. Physiol. Plant. 126: 539-548.Choe S., Dilkes B. P., Fujioka S., Takatsuto S., Sakurai A., Feldmann K. A. (1998). The DWF4 gene of Arabidopsis encodes a cytochrorne P450 that mediates multiple 22a-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10: 231-243.Chory J., Li J. (1997). Gibberellins, brassinosteroids and light-regulated develop ment. Plant Cell Environ. 20: 801-806.Claiborne A. (1985). Catalase activity. [W:] Greenwald R. A. (red.). CRC Handbook of methods in oxygen radical research. CRC Press Inc., Boca Raton, s. 283-284.Clouse S. D. (2002). Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. Mol. Cell 10: 973-982.Clouse S. D., Feldmann K. A. (1999). Molecular genetics of brassinosteroid action. [W:] Sakurai A., Yokota T., Clouse S. D. (red.). Brassinosteroids: steroidal plant hormones. Springer-Verlag, Tokyo, s. 163-190.Cobbett C. (2000). Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123: 825- 832.Cobbett C., Goldsbrough P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 53: 159-182.Cohen J. D., Meudt W. J. (1983). Investigations on the mechanisms of the brassinosteroid response. I. Indole-3 -acetic acid metabolism and transport. Plant Physiol. 72: 691-694.Cohen J. D., Slovin J. P., Hendrickson A. M. (2003). Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends Plant Sci. 8: 197-199.Collins M. (1978). AIgal toxins. Microbiol. Rev. 42: 725-746.Crawford N. M., Kahn M . L., Leustek T., Long S. R. (2000). Nitrogen and sulfur. [W:] Buchanan B., Gruissem W., Jones R. (red.). Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, S. 786-849.Cymers J., Niemiałtowski M. (2004). Białka szoku cieplnego. Molekularne perpetuum mobile. Post. Biol. Kom. 31: 331-352.Czarna M., Jarmuszkiewicz W. (2006). Rola mitochondriów w wytwarzaniu i usuwaniu reaktywnych form tlenu; związek z przesyłaniem sygnałów i programowaną śmiercią komórki. Post. Bioch. 52: 145-156.Czerpak R. (1993). Fotokontrola wzrostu, rozwoju i metabolizmu glonów. Kosmos 42: 599-612.Czerpak R., Bajguz A. (1993). Effect of auxins and cytokinins on protein and saccharides extracellular excretion in Chlorella pyrenoidosa. Pol. Arch. Hydrobiol. 40: 249-254.Czerpak R., Bajguz A. (1997). Stimulatiory effect of auxins and cytokinins on carotenes, with differential effects on xanthophylls in the green alga Chlorella pyrenoidosa Chick. Acta Soc. Bot. Pol. 66: 41-46.Czerpak R., Bajguz A., Białecka B., Wierzchołowska L. E., Wolańska M. M. (1994). Effect of auxin precursors and chemical analogues on the growth and chemical composition in Chlorella pyrenoidosa Chick. Acta Soc. Bot. Pol. 63: 279-286.Czerpak R., Piotrowska A. (2003). Cytokininy, ich struktura metabolizm i aktywność biologiczna. Kosmos 52: 203-215.D'Agostino L B., Kieber J. J. (1999). Molecular mechanism of cytokinin action. Curr. Opin. Plant Biol. 2: 359-364.Davies K. L., Davies M. S., Francis D. (1991). The influence of an inhibitor of phytochelatin synthesis on root growth and root meristematic activity in Festuca rubra L. in response to zinc. New Phytol. 118: 565-570.Davies P. J. (red.). (2004). Plant hormones. Biosynthesis, signal transduction, action! Kluwer Acad. Publ., Dordrecht.De Filippis L. F., Pallaghy C. K. (1976). The effect of sublethal concentrations of mercury and zinc on Chlorella. III. Development and possible mechanisms of resisitance to metaIs. Z. Pflanzenphysiol. 79: 323-335.De Knecht J. A., Van Dillen M., Koevoets P. L. M., Schat H., Verkleij J. A. C., Ernst W. H. O. (1994). Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Physiol. 104: 255-261.De Michelis M. L, Lado P. (1986). Effects of a brassinosteroid on growth and on H+ - extrusion in isolated radish cotyledons: comparison with the effects of benzyladenine. Physiol. Plant. 68: 603-607.DeI Pozo J. C., Lopez-Matas M. A., Ramirez-Parra E., Gutierrez C. (2004). Hormonal control of the plant cell cycle. Physiol. Plant. 123: 173-183.DeI Rio L. A., Sandalio L. M., Corpas F. J., Palma J. M., Barroso J. B. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol. 141: 330-335.Dharmasiri N., Estelle M. (2004). Auxin signaling and regulated protein degradation. Trends Plant Sci. 9: 302-308.Dhaubhadel S., Browning K. S., Gallie D. R., Krishna P. (2002). Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J. 29: 681-691.Dhaubhadel S., Chaudhary S., Dobinson K. F., Krishna P. (1999). Treatment of 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol. Biol. 40: 333-342.Disch A., Schwender J., Miiller e, Lichtenthaler H. K., Rohmer M. (1998). Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem. J. 333: 381-388.Durrieu C., Tran-Minh C. (2002). Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol. Environ. Safety 51: 206-209.EIstner E. F., Heupel A. (1976). Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Ann. Biochem. 70: 616-620.Eun J-S., Kuraishi S., Sakurai A. (1989). Changes in levels of auxin and abscisic acid and the evolution of ethylene in squash hyp ocotyls after treatment with brassinolide. Plant Cell Physiol. 30: 807-810.Fargasova A. (1993). Effect of five toxic metaIs on the alga Scenedesmus quadricauda. Biologia 48: 301-304.Feldmann K. A., Marks M. D., Christianson M. L., Quatrano R. S. (1989). A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science 243: 1351-1354.Franklin N. M., Stauber J. L., Markich S. J., Lim R. P. (2000). pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp). Aquat. Toxicol. 48: 275-289.Frankowski K, Kęsy J., Kopcewicz J. (2001). Fitochrom i transdukcja sygnału świetlnego. Post. Bioch. 47: 184-191.Friedrichsen D., Chory J. (2001). Steroid signaling in plants: from the cell surface to the nucleus. BioEssays 23: 1028-1036.Fujioka S., Inoue T., Takatsuto S., Yanagisawa T., Sakurai A., Yokota T. (1995a). Identification of a new brassinosteroid, cathasterone, in cultured cells of Catharanthus roseus as a biosynthetic precursor of teasterone. Biosci. Biotech. Biochem. 59: 1543-1547.Fujioka S., Inoue T., Takatsuto S., Yanagisawa T., Sakurai A., Yokota T. (1995b). Biological activities of biosynthetically-related congeners of brassinolide. Biosci. Biotech. Biochem. 59: 1973-1975.Fujioka S., Li J., Choi Y.-H., Seto H., Takatsuto S., Noguchi T., Watanabe T., Kuriyama H., Yokota T., Chory J., Sakurai A. (1997). The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell 9: 1951-1962.Fujioka S., Noguchi T., Sekimoto M., Takatsuto S., Yoshida S. (2000a). 28 -Norcastasterone is biosynthesized from castasterone. Phytochemistry 55: 97-101.Fujioka S., Noguchi T., Watanabe T., Takatsuto S., Yoshida S. (2000b). Biosynthesis of brassinosteroids in cultured cells of Catharanthus roseus. Phytochemistry 53: 549-553.Fujioka S., Takatsuto S., Yoshida S. (2002). An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol. 130: 930-939.Fujioka S., Yokota T. (2003). Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 54: 137-164.Gächter R., Mares A. (1979). Effect of increased heavy metal loads on phytoplankton communites. MELIMEX an Experimental Heavy Metal Pollution Study 770: 229-246.Gamoh K., Takatsuto S. (1994). Liquid chromatographic assay of brassinosteroids in plants. J. Chromatogr. A 658: 17-25.Gaspar T., Kevers C., Penel C., Greppin H., Reid D. M., Thorpe T. A. (1996). Plant hormones and plant growth regulators in plant tissue culture. In Vitro Celi Dev. Biol. Plant 32: 272-289.Gregory L. E., Mandava N. B. (1982). The activity and interaction of brassinolide and gibberellic acid in mung bean epicotyls. Physiol. Plant. 54: 239-243.Greider R. J., Osborne B . A. (1992). AIgal photosynthesis. Chapman and Hall, New York.Grill E., Winnaker E .-L., Zenk M. H. (1985a). Phytochelatins, a class of heavymetals-binding peptides from plants are functionally analogous to methallothioneins. Proc. Natl. Acad. Sci. USA 84: 439-443.Grove M . D., Spencer G . F., Rohwedder W. K., Mandava N., Wodey J. F., Warthen Jr J. D., Steffens G. L., Flippen-Anderson J. L., Cook Jr J. C. (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281: 216-217.Gumiński S. (1990). Fizjologia glonów i sinic. Wyd. Uniw. Wroc., Wrocław.Gwóźdź E. A. (1996). Molekularne podstawy odpowiedzi roślin na stresy środowiskowe. [W:] Barciszewski J., Łastowski K., Twardowski T. (red.). Nowe tendencje w biologii molekularnej i inżynierii genetycznej. Wyd. Sorus, Poznań, s. 469 -492.Gwóźdź E . A., Przymusiński R., Rucińska R., Deckert J. (1997). Plant cell responses to heavy metais: molecular and physiological aspects. Acta Physiol. Plant. 19: 459-465.Hampp A. D., Lendzian K. (1974). Effect of lead ion on chlorophyll synthesis. Naturwissenschaften 61: 218-219.Harberer G ., Kieber J. J. (2002). Cytokinins. New insights into a classic phy tohormone. Plant Physiol. 128: 354-362.Hare P. D., Cress W. A., van Staden J. (1997). The involment of cytokinins in plant responses to environmental stress. Plant Growth Regul. 23: 79-103.Harmens H., Den Hartog P. R., Ten Bookum W. M., Verkleij J. C. A. (1993). Increased zinc tolerance in Silene vulgaris (Moench) Garcke is not due to increased production of phytochelatins. Plant Physiol. 103: 1305-1309.He R.-Y., Wang G.-J., Wang X.-S. (1991). Effect of brassinolide on growth and chilling resistance of maize seedlings. [W:] Cutler H. G., Yokota T., Adam G. (red.). Brassinosteroids: chemistry, bioactivity and applications. American Chemical Society, Washington, s. 220-230.He Z., Wang Z.-Y., Li J., Zhu Q., Lamb C., Ronald P., Chory J. (2000). Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288: 2360-2363.Hellingwerf K. J., Hoff W. D., Crielaard W. (1996). Photobiology of microorganisms: how photosensors catch a photon to initialize signaling. Mol. Microbiol. 21: 683-693.Hetmann A., Kowalczyk S. (2004a). Roślinne receptory światła niebieskiego i UV-A pośredniczące w reakcjach fototropicznych, fotomorfogenezie i nastawianiu zegara biologicznego. Post. Biol. Kom. 31: 441-463.Hetmann A., Kowalczyk S. (2004b). Szlaki sygnałowe aktywowane przez fitochromy, roślinne receptory światła czerwonego i dalekiej czerwieni. Post. Biol. Kom. 31: 155-176.Hewitt B. R. (1958). Spectrophotometric determination of protein in alkaline solution. Nature 182: 4630.Holden M. J., Patterson G. W. (1982). Taxonomic implication of sterol composition in the genus Chlorella. Lipids 17: 215-219.Holzwarth A. R. (1991). Structure-function relationships and energy transfer in phycobiliprotein antennae. Physiol. Plant. 83: 518-528.Horvath D. P., Anderson J. V., Chao W. S., Foley M. E. (2003). Knowing when to grow: signais regu lating bud dormancy. Trends Plant Sd. 8: 534-540.Hosono H., Uemura L, Takumi T., Nagamune T., Yasuda T., Kishimoto M., Nagashima H., Shimomura N., Natori M., Endo L. (1994). Effect of culture temperature shift on the cellular sugar accumulation of Chlorella vulgaris SO-26. J. Ferment. Bioeng. 78: 235 -240.Hotta Y., Tanaka T., Bingshan L., Takeuchi Y., Konnai M. (1998). Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. J. Pesticide Sci. 23: 29-33.Hörtensteiner S. (1999). Chlorophyll breakdown in higher plants and algae. Cell. Mol. Life Sci. 56: 330-347.Hu Y., Boa E, Li J. (2000). Promotive effect of brassinosteroids on cell division involves a distinct CycD3- -induced pathway in Arabidopsis. Plant J. 24: 693-701.Hwang L, Sheen J. (2001). Two-component drcuitry in A
Comprehensive Overview of the Brassinosteroid Biosynthesis Pathways: Substrates, Products, Inhibitors, and Connections
Brassinosteroids (BRs) as a class of steroid plant hormones participate in the regulation of
numerous developmental processes, including root and shoot growth, vascular
differentiation, fertility, flowering, and seed germination, as well as in responding to
environmental stresses. During four decades of research, the BR biosynthetic pathways
have been well studied with forward- and reverse genetics approaches. The free BRs
contain 27, 28, and 29 carbons within their skeletal structure: (1): 5a-cholestane or 26-
nor-24a-methyl-5a-cholestane for C27-BRs; (2) 24a-methyl-5a-cholestane, 24b-methyl-
5a-cholestane or 24-methylene-5a-cholestane for C28-BRs; (3) 24a-ethyl-5acholestane,
24(Z)-ethylidene-5a-cholestane, 25-methyl-5a-campestane or 24-
methylene-25-methyl-5a-cholestane for C29-BRs, as well as different kinds and
orientations of oxygenated functions in A- and B-ring. These alkyl substituents are also
common structural features of sterols. BRs are derived from sterols carrying the same side
chain. The C27-BRs without substituent at C-24 are biosynthesized from cholesterol. The
C28-BRs carrying either an a-methyl, b-methyl, or methylene group are derived from
campesterol, 24-epicampesterol or 24-methylenecholesterol, respectively. The C29-BRs
with an a-ethyl group are produced from sitosterol. Furthermore, the C29 BRs carrying
methylene at C-24 and an additional methyl group at C-25 are derived from 24-
methylene-25-methylcholesterol. Generally, BRs are biosynthesized via cycloartenol
and cycloartanol dependent pathways. Till now, more than 17 compounds were
characterized as inhibitors of the BR biosynthesis. For nine of the inhibitors (e.g.,
brassinazole and YCZ-18) a specific target reaction within the BR biosynthetic pathway
has been identified. Therefore, the review highlights comprehensively recent advances in
our understanding of the BR biosynthesis, sterol precursors, and dependencies between
the C27-C28 and C28-C29 pathways
Suppression of Chlorella vulgaris Growth by Cadmium, Lead, and Copper Stress and Its Restoration by Endogenous Brassinolide
Brassinosteroids play a significant role in the amelioration of various abiotic and biotic stresses. In order to elaborate their roles in plants subjected to heavy metals stress, Chlorella vulgaris cultures treated with 10−8 M brassinolide (BL) were exposed to 10−6–10−4 M heavy metals (cadmium, lead and copper) application. Under heavy metals stress, the growth and chemical composition (chlorophyll, monosaccharides, and protein content) have been decreased during the first 48 h of cultivation. The inhibitory effect of heavy metals on C. vulgaris cultures was arranged in the following order: copper > lead > cadmium. C. vulgaris cultures treated with BL in the absence or presence of heavy metals showed no differences in the endogenous level of BL. On the other hand, treatment with heavy metals results in BL level very similar to that of control cell cultures. These results suggest that the activation of brassinosteroids biosynthesis, via an increase of endogenous BL, is not essential for the growth and development of C. vulgaris cells in response to heavy metals stress. Simultaneously, BL enhanced the content of indole-3-acetic acid, zeatin, and abscisic acid in cultures treated with heavy metals. Levels per cell of chlorophylls, protein, and monosaccharides are all increased by BL treatment when compared to nontreated control cells. Application of BL to C. vulgaris cultures reduced the accumulation of heavy metals stress on growth, prevented chlorophyll, monosaccharides, and protein loss, and increased phytochelatins content. The arrested growth of C. vulgaris cells treated with heavy metals was restored by the coapplication of BL. It suggested that BL overcame the inhibitory effect of heavy metals. From these results, it can be concluded that BL plays the positive role in the alleviation of heavy metals stress
Phytochemical screening of Pulsatilla species and investigation of their biological activities
© 2019, The Author(s). We previously demonstrated that extracts from Echinacea purpurea material varied substantially in their ability to activate macrophages in vitro and that this variation was due to differences in their content of bacterial components. The purpose of the current study was to identify soil conditions (organic matter, nitrogen, and moisture content) that alter the macrophage activation potential of E. purpurea and determine whether these changes in activity correspond to shifts in the plant-associated microbiome. Increased levels of soil organic matter significantly enhanced macrophage activation exhibited by the root extracts of E. purpurea (p \u3c 0.0001). A change in soil organic matter content from 5.6% to 67.4% led to a 4.2-fold increase in the macrophage activation potential of extracts from E. purpurea. Bacterial communities also differed significantly between root materials cultivated in soils with different levels of organic matter (p \u3c 0.001). These results indicate that the level of soil organic matter is an agricultural factor that can alter the bacterial microbiome, and thereby the activity, of E. purpurea roots. Since ingestion of bacterial preparation (e.g., probiotics) is reported to impact human health, it is likely that the medicinal value of Echinacea is influenced by cultivation conditions that alter its associated bacterial community
The Mineral Profile of Polish Beers by Fast Sequential Multielement HR CS FAAS Analysis and Its Correlation with Total Phenolic Content and Antioxidant Activity by Chemometric Methods
Beer is the most common alcoholic beverage worldwide, and is an excellent source of macro- and microelements, as well as phenolic compounds. In this study, a fast method for the determination of Na, K, Mg, Ca, Fe, Mn, and Cu in beer was developed using flame atomic absorption spectrometry. The precision of this method was between 0.8 and 8.0% (as the relative standard deviation (RSD)), and limits of detections were in the range of 0.45 (Mn)–94 µg/L (Na). Among the macroelements tested in the beer samples, K was found at the highest concentration, whereas Na was found at the lowest concentration level. Beer also turned out to be a good source of Mg and K. The total phenolic content (TPC) was determined by the Folin–Ciocalteu method, while the antioxidant activity was estimated by the ABTS method. The results show remarkable variations in the mineral content, TPC, and antioxidant activity across the beer types and brands. Moreover, the relations between the type, color, refraction index, antioxidant activity, extract, alcohol, mineral, and the total phenolic contents were investigated using the factor analysis of mixed data (FAMD) combined with hierarchical clustering on principal components (HCPC).This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The equipment used in this work was partly supported by EU funds (the project with contract number POPW.01.03.00-20-004/11).Elżbieta Zambrzycka-Szelewa: [email protected] Nalewajko-Sieliwoniuk: [email protected] Zaremba: [email protected] Bajguz: [email protected] Godlewska-Żyłkiewicz: [email protected]żbieta Zambrzycka-Szelewa - Faculty of Chemistry, University of BialystokEdyta Nalewajko-Sieliwoniuk - Faculty of Chemistry, University of BialystokMariusz Zaremba - Faculty of Chemistry, University of BialystokAndrzej Bajguz - Faculty of Biology, University of BialystokBeata Godlewska-Żyłkiewicz - Faculty of Chemistry, University of BialystokBrowary Polskie. Raport: Podsumowanie Analizy Wybranych Wskaźników Wpływu Przemysłu Piwowarskiego na Polską Gospodarkę i Otoczenie. 2018. Available online: https://browary-polskie.pl/wp-content/uploads/2018/11/Raport-Deloitte.pdf (accessed on 21 March 2020). (In Polish)Buiatti, S. Beer composition: An overview. In Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 213–225.Passaghe, P.; Bertoli, S.; Tubaro, F.; Buiatti, S. Monitoring of some selected heavy metals throughout the brewing process of craft beers by inductively coupled plasma mass spectrometry. Eur. Food Res. Technol. 2015, 241, 199–215.Čejka, P.; Horák, T.; Dvořák, J.; Čulĺk, J.; Jurková, M.; Kellner, V.; Hašková, D. Monitoring of the distribution of some heavy metals during brewing process. Ecol. Chem. Eng. S 2011, 18, 67–74Cacho, J.; Castells, J.E.; Esteban, A.; Laguna, B.; Sagrista, N. Iron, copper, and manganese influence on wine oxidation. Am. J. Enol. Vitic. 1995, 46, 380–384.Zhao, H. Endogenous antioxidants and antioxidant activities of beers. In Processing and Impact on Antioxidants in Beverages, 1st ed.; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 15–24.Mitić, S.S.; Paunović, D.D.; Pavlović, A.N.; Tošić, S.B.; Stojković M.B.; Mitić, M.N. Phenolic profiles and total antioxidant capacity of marketed beers in Serbia. Int. J. Food Prop. 2014, 17, 908–922.de Córdova, F.M.L.; Medina, R.M. Analytical methods for determination of polyphenols in beer. In Processing and Impact on Antioxidants in Beverages, 1st ed.; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 289–299.Alcázar, A.; Pablos, F.; Martin, M.J.; Gonzalez, A.G. Multivariate characterisation of beers according to their mineral content. Talanta 2002, 57, 45–52.Bellido-Milla, D.; Onate-Jaen, A.; Palacios-Santander, J.M.; Palacios-Tejero, D.; Hernandez-Artiga, M.P. Beer digestion for metal determination by atomic spectrometry and residual organic matter. Microchim. Acta 2004, 144, 183–190.Pohl, P.; Prusisz, B. Chemical fractionation of Cu, Fe and Mn in canned Polish beers. J. Food Compos. Anal. 2010, 23, 86–94.Nascentes, C.C.; Kamogawa, M.Y.; Fernandes, K.G.; Arruda, M.A.Z.; Nogueira, A.R.A.; Nobrega, J.A. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry. Spectrochim. Acta B 2005, 60, 749–753.de Oliveira Borges, S.S.; Beinner, M.A.; Silva, J.B. Direct method for determination of Al, Cd, Cu, and Pb in beers in situ digested by GF AAS using permanent modifiers. Biol. Trace Elem. Res. 2015, 167, 155–163.Asfaw, A.; Wibetoe, G. Direct analysis of beer by ICP-AES: A very simple method for determination of Cu, Mn and Fe. Microchim. Acta 2005, 152, 61–68.Markovski, J.; Markovski, M.; Knežević, B.; Hristovski, K.D. Metals in selected beers commercially available in the US: Unmonitores sources of concerning exposure. Maced. J. Chem. Chem. Eng. 2018, 37, 159–172.Wyrzykowska, B.; Szymczyk, K.; Ichichashi, H.; Falandysz, J.; Skwarzec, B.; Yamasaki, S. Application of ICP sector field MS and principal component analysis for studying interdependences among 23 trace elements in Polish beers. J. Agric. Food Chem. 2001, 49, 3425–3431.Voica, C.; Magdas, D.A.; Feher, I. Metal content and stable isotope determination in some commercial beers from Romanian markets. J. Chem. 2015.Rodrigo, S.; Young, S.D.; Talaverano, M.I.; Broadley, M.R. The influence of style and origin on mineral composition of beers retailing in the UK. Eur. Food Res. Technol. 2017, 243, 931–939.Matsushige, I.; de Oliveira, E. Determination of trace elements in Brazilian beers by ICP-AES. Food Chem. 1993, 47, 205–207.Heitmann, U.; Welz, B.; Borges, D.L.G.; Lepri, F.G. Feasibility of peak volume, side pixel and multiple peak registration in high-resolution continuum source atomic absorption spectrometry. Spectrochim. Acta B 2007, 62, 1222–1230.Raposo, J.L., Jr.; de Oliveira, S.R.; Caldas, N.M.; Gomes Neto, J.A. Evaluation of alternate lines of Fe for sequential multi-element determination of Cu, Fe, Mn and Zn in soil extracts by high resolution continuum source flame atomic absorption, spectrometry. Anal. Chim. Acta 2008, 627, 198–202.Resano, M.; Florez, M.R.; Garcia-Ruiz, E. High-resolution continuum source atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple lines. A critical review of current possibilities. Spectrochim. Acta B 2013, 88, 85–97.Frentiu, T.; Ponta, M.; Hategan, R. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil. Chem. Cent. J. 2013, 7, 43.de Oliveira, S.R.; Raposo, J.L., Jr.; Gomes Neto, J.A. Fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn for foliar diagnosis using high-resolution continuum source flame atomic absorption spectrometry: Feasibility of secondary lines, side pixel registration and least-squares background correction. Spectrochim. Acta B 2009, 64, 593–596.de Oliveira, S.R.; Gomes Neto, J.A.; Nobrega, J.N.; Jones, B.T. Determination of macro- and micronutrients in plant leaves by high-resolution continuum source flame atomic absorption spectrometry combining instrumental and sample preparation strategies. Spectrochim. Acta B 2010, 65, 316–320.Peña-Vázquez, E.; Barciela-Alonso, M.C.; Pita-Calvo, C.; Domínguez-González, R.; Bermejo-Barrera, P. Use of high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) for sequential multi-element determination of metals in seawater and wastewater samples. J. Appl. Spectrosc. 2015, 82, 681–686.Pohl, P.; Dzimitrowicz, A.; Jamróz, P.; Greda, K. Development and optimization of simplified method of fast sequential HR-CS-FAAS analysis of apple juices on the content of Ca, Fe, K, Mg, Mn and Na with the aid of response surface methodology. Talanta 2018, 189, 182–189.Alcázar, A.; Jurado, J.M.; Palacios-Morillo, A.; de Pablos, F.; Martín, M.J. Recognition of the geographical origin of beer based on support vector machines applied to chemical descriptors. Food Control 2012, 23, 258–262.Moura-Nunes, N.; Brito, T.C.; da Fonseca, N.D.; de Aguiar, P.F.; Monteiro, M.; Perrone, D.; Torres, A.G. Phenolic compounds of Brazilian beers from different types and styles and application of chemometrics for modeling antioxidant capacity. Food Chem. 2016, 199, 105–113.Polak, J.; Bartoszek, M.; Stanimirova, I. A study of the antioxidant properties of beers using electron paramagnetic resonance. Food Chem. 2013, 141, 3042–3049.Szabó, E.; Sipos, P. Mineral and polyphenol contents of self-brewed and commercial beer samples. J. MacroTrends Appl. Sci. 2014, 2, 1–9.Pohl, P. Determination and fractionation of metals in beer—a review. Food Addit. Contam. 2008, 25, 693–703.United States Environmental Protection Agency. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils, Revision 2; United States Environmental Protection Agency: Washington, DC, USA, 1996. Available online: https://www.epa.gov/sites/production/files/2015-06/documents/epa-3050b.pdf (accessed on 23 March 2020).US Food and Drug Administration Guidance for Industry: A Food Labeling Guide (14. Appendix F: Calculate the Percent Daily Value for the Appropriate Nutrients). Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-food-labeling-guide (accessed on 15 July 2020).Rajkowska, M.; Holak, M.; Protasowicki, M. Macro- and microelements in some selected assortments of beer. Zywn. Nauk. Technol. Ja. 2009, 2, 112–118. (In Polish)Styburski, D.; Janda, K.; Baranowska-Bosiacka, I.; Łukomska, A.; Dec, K.; Goschorska, M.; Michalkiewicz, B.; Ziętek, P.; Gutowska, I. Beer as a potential source of macroelements in a diet: The analysis of calcium, chlorine, potassium, and phosphorus content in a popular low-alcoholic drink. Eur. Food Res. Technol. 2018, 244, 1853–1860.Priest, F.G.; Stewart, G.G. Handbook of Brewing, 2nd ed.; CRC Press: Boston, MA, USA, 2006.Dabina-Bicka, I.; Karklina, D.; Kruma, Z.; Dimins, F. Bioactive compounds in Latvian beer. Proc. Latv. Univ. Agric. 2013, 30, 35–42.Piazzon, A.; Forte, M.; Nardini, M. Characterization of phenolics content and antioxidant activity of different beer types. J. Agric. Food Chem. 2010, 58, 10677–10683.Neto, J.R.O.; de Oliveira, T.S.; Ghedini, P.C.; Vaz, B.G.; de Souza Gil, E. Antioxidant and vasodilatory activity of commercial beers. J. Funct. Foods 2017, 34, 130–138.Vinson, J.A.; Mandarano, M.; Hirst, M.; Trevithick, J.R.; Bose, P. Phenol antioxidant quantity and quality in foods: Beers and the effect of two types of beer on an animal model of atherosclerosis. J. Agric. Food Chem. 2017, 51, 5528–5533.Pérez-Ráfols, C.; Saurina, J. Liquid chromatographic fingerprints and profiles of polyphenolic compounds applied to the chemometric characterization and classification of beers. Anal. Methods 2015, 7, 8733–8739.Bertuzzi, T.; Mulazzi, A.; Rastelli, S.; Donadini, G.; Rossi, F.; Spigno, G. Targeted healthy compounds in small and large-scale brewed beers. Food Chem. 2020, 310, 125935.Pieszko, C.; Kurek, T. Wpływ procesów przetwórczych na zawartość polifenoli w piwach. Bromatol. Chem.Toksykol. 2011, 44, 199–203. (In Polish)Ditrych, M.; Kordialik-Bogacka, E.; Czy ˙zowska, A. Antiradical and reducing potential of commercial beers. Czech J. Food Sci. 2015, 33, 261–266.Zhao, H.; Chen, W.; Lu, J.; Zhao, M. Phenolic profiles and antioxidant activities of commercial beers. Food Chem. 2010, 119, 1150–1158.Pai, T.V.; Sawant, S.Y.; Ghatak, A.A.; Chaturvedi, P.A.; Gupte, A.M.; Desai, N.S. Characterization of Indian beers: Chemical composition and antioxidant potential. J. Food Sci. Technol. 2015, 52, 1414–1423.Niño-Medina, G.; Romo-Longoria, J.D.; Ramírez-González, I.V.; Martínez-Reyna, O.O. Phenolic content and antioxidant capacity level in commercial Mexican Lager beers. J. Am. Soc. Brew. Chem. 2017, 75, 156–158.Rodrigues, J.E.; Gil, A.M. NMR methods for beer characterization and quality control. Magn. Reson. Chem. 2011, 49 (Suppl. 1), S37–S45.Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Brooks/Cole Publishing Company: Pacific Grove, CA, USA, 1996.Sulaiman, S.F.; Yusoff, N.A.M.; Eldeen, I.M.; Seow, E.M.; Sajak, A.A.B.; Supriatno; Ooi, K.L. Correlation between total phenolic and mineral contents with antioxidant activity of eight Malaysian bananas (Musa sp.). J. Food Compos. Anal. 2011, 24, 1–10.Kostic, D.; Velickovic, J.M.; Mitic, S.S.; Mitic, M.N.; Randjelovic, S.S.; Arsic, B.B.; Pavlovic, A.N. Correlation among phenolic, toxic metals and antioxidant activity of the extracts of plant species from Southeast Serbia. Bull. Chem. Soc. Ethiop. 2013, 27, 169–178.Perna, A.; Simonetti, A.; Intaglietta, I.; Sofo, A.; Gambacorta, E. Metal content of southern Italy honey of different botanical origins and its correlation with polyphenol content and antioxidant activity. Int. J. Food Sci. Technol. 2012, 47, 1909–1917.Pohl, P.; Sergiel, I. Evaluation of the total content and the operationally defined species of copper in beers and wines. J. Agric. Food Chem. 2009, 57, 9378–9384.Sungur, S.; Uzar, A. Investigation of complexes tannic acid and myricetin with Fe(III). Spectrochim. Acta A 2008, 69, 225–229.Strong, G.; England, K. (Eds.) Beer Style Guidelines; Beer Judge Certification Program (BJCP. Inc.): St. Louis Park, MN, USA, 2015. Available online: https://www.bjcp.org/docs/2015_Guidelines_Beer.pdf (accessed on 21 March 2020).Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660.Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical. Biol. Med. 1999, 26, 1231–1237.R Core Team. A Language and Environment for Statistical Computing; R Version 3.6.1; Action of the Toes; R Foundation for Statistical Computing: Vienna, Austria, 2019. Available online: https://www.R-project.org/ (accessed on 5 July 2019).Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix; Version 0.84; CRAN: Vienna, Austria, 2017. Available online: https://cran.r-project.org/web/packages/corrplot/ (accessed on 17 October 2017).Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18.Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses; R Package Version 1.0.6; CRAN: Vienna, Austria, 2019. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 16 January 2020).2512
Editorial : An update on brassinosteroids : homeostasis, crosstalk, and adaptation to environmental stress
Over the last three decades, there have been significant advances in the understanding of brassinosteroid (BR) biosynthesis and signaling, particularly in the model plant species Arabidopsis thaliana. BRs regulate a variety of morphogenetic and physiological processes throughout plant life. Notably, BR biosynthesis and signaling are interconnected with the signaling pathways of other phytohormones and environmental stresses. Gathering knowledge about these aspects in monocot and dicot crops is of particular importance as it may allow modulation of these processes and enable the development cultivars better adapted to ongoing climate change. This Research Topic, providing An Update on Brassinosteroids: Homeostasis, Crosstalk, and Adaptation to Environmental Stress is aimed at introducing the latest findings in the regulation of BR metabolism, the interconnection of the BR signalosome with phytohormonal and stress signaling pathways, and the BR-mediated adaptation of plants to environmental conditions. The Research Topic includes five reviews and one original research article. [fragm. tekstu
Possibilities of Utilising Biomass Collected from Road Verges to Produce Biogas and Biodiesel
Grass collected as part of roadside maintenance is conventionally subjected to composting, which has the disadvantage of generating significant CO2 emissions. Thus, it is crucial to find an alternative method for the utilisation of grass waste. The aim of this study was to determine the specific biogas yield (SBY) from the anaerobic mono-digestion of grass from road verges and to assess the content of Fatty Acid Methyl Esters (FAMEs) in grass in relation to the time of cutting and the preservation method of the studied material. The biochemical biogas potential (BBP) test and the FAMEs content were performed on fresh and ensiled grass collected in spring, summer, and autumn. The highest biogas production was obtained from fresh grass cut in spring (715.05 ± 26.43 NL kgVS−1), while the minimum SBY was observed for fresh grass cut in summer (540.19 ± 24.32 NL kgVS−1). The methane (CH4) content in the biogas ranged between 55.0 ± 2.0% and 60.0 ± 1.0%. The contents of ammonia (NH3) and hydrogen sulphide (H2S) in biogas remained below the threshold values for these inhibitors. The highest level of total FAMEs was determined in fresh grass cut in autumn (98.08 ± 19.25 mg gDM−1), while the lowest level was detected in fresh grass cut in spring (56.37 ± 7.03 mg gDM−1). C16:0 and C18:0, which are ideal for biofuel production, were present in the largest amount (66.87 ± 15.56 mg gDM−1) in fresh grass cut in autumn. The ensiling process significantly impacted the content of total FAMEs in spring grass, leading to a reduction in total saturated fatty acids (SFAs) and an increase in total unsaturated fatty acids (USFAs). We conclude that grass biomass collected during the maintenance of road verges is a valuable feedstock for the production of both liquid and gaseous biofuels; however, generating energy from biogas appears to be more efficient than producing biodiesel
Phytochemical screening of Pulsatilla species and investigation of their biological activities
The present study aimed to identify biologically active secondary metabolites from the rare plant species, Pulsatilla patens subsp. patens and the cultivated P. vulgaris subsp. vulgaris. Chromatographic fractionation of the ethanolic extract of the roots of P. patens subsp. patens resulted in the isolation of two oleanane-type glycosides identified as hederagenin 3-O-β-d-glucopyranoside (2.7 mg) and hederagenin 3-O-β-d-galactopyranosyl-(1→2)-β-d-glucopyranoside (3.3 mg, patensin). HPLC analysis of the methanolic extract of the crude root of P. patens subsp. patens and P. vulgaris subsp. vulgaris revealed the presence of Pulsatilla saponin D (hederagenin 3-O-α-l-rhamnopyranosyl(1→2)-[β-d-glucopyranosyl(1→4)]-α-l-arabinopyranoside). Chromatographic analysis using GC-MS of the silylated methanolic extracts from the leaves and roots of these species identified the presence of carboxylic acids, such as benzoic, caffeic, malic, and succinic acids. The extracts from Pulsatilla species were tested for their antifungal, antimicrobial, and antimalarial activities, and cytotoxicity to mammalian cell lines. Both P. patens subsp. patens and P. vulgaris subsp. vulgaris were active against the fungus Candida glabrata with the half-maximal inhibitory concentration (IC50) values of 9.37 µg/mL and 11 µg/mL, respectively. The IC50 values for cytotoxicity evaluation were in the range of 32–38 μg/mL for P. patens subsp. patens and 35–57 μg/mL for P. vulgaris subsp. vulgaris for each cell line, indicating general cytotoxic activity throughout the panel of evaluated cancer and noncancer cells