14 research outputs found

    Physiological Effects of Superoxide Dismutase on Altered Visual Function of Retinal Ganglion Cells in db/db Mice

    Get PDF
    Background: The C57BLKS/J db/db (db/db) mouse is a widely used type 2 diabetic animal model, and this model develops early inner retinal neuronal dysfunction beginning at 24 weeks. The neural mechanisms that mediate early stage retinal dysfunction in this model are unknown. We evaluated visual response properties of retinal ganglion cells (RGCs) during the early stage of diabetic insult (8, 12, and 20 wk) in db/db mice and determined if increased oxidative stress plays a role in impaired visual functions of RGCs in 20 wk old db/db mice. Methodology/Principal Findings: In vitro extracellular single-unit recordings from RGCs in wholemount retinas were performed. The receptive field size, luminance threshold, and contrast gain of the RGCs were investigated. Although ONand OFF-RGCs showed a different time course of RF size reduction, by 20 wk, the RF of ON- and OFF-RGCs were similarly affected. The LT of ON-RGCs was significantly elevated in 12 and 20 wk db/db mice compared to the LT of OFF-RGCs. The diabetic injury also affected contrast gains of ON- and OFF-RGCs differently. The generation of reactive oxidative species (ROS) in fresh retina was estimated by dihydroethidium. Superoxide dismutase (SOD) (300 unit/ml) was applied in Ames medium to the retina, and visual responses of RGCs were recorded for five hours. ROS generation in the retinas of db/db mice increased at 8wk and continued to progress at 20 wk of ages. In vitro application of SOD improved visual functions in 20 wk db/db mice but the SOD treatment affected ON- and OFF-RGCs differently in db/m retina

    Methods of radar data compression and target identification based on biorthogonal FDWT

    No full text

    Numerical Simulation of Bridging Ball Plugging Mechanism in Fractured-Vuggy Carbonate Reservoirs

    No full text
    Pores, fractures, caves, and other storage spaces are commonly distributed in fractured-vuggy carbonate reservoirs. During the drilling process, more than half of all drill-in fluid loss issues are caused by developed caves. Cave scales range from centimeters to meters, making leak prevention increasingly difficult through the use of traditional technologies. Currently, there is still high demand for the understanding of feasible loss control techniques, especially in fractured-vuggy carbonate reservoirs. Multistage Bridge Plugging (MBP) technology has facilitated pioneering experiments in many oilfields, but the success rate of plugging is less than 50%, and the effects of plugging are uncontrollable and difficult to predict. This is due to a lack of clarity regarding the plugging mechanism and the key controlling factors. In this study, we used the Discrete Element Method (DEM) simulation method to investigate the controlling factors of MBP technology, and analyzed its applicable conditions. We found that the prerequisite for the success of MBP is the presence of a constricted throat near the wellbore when drilling the well hole; the first-stage bridging ball is the key to the success of MBP. Larger ball radius, cave inclination and initial flow rate, and lower ball velocity are beneficial to the first-stage bridging. All discussion in this research is based on the ideal situation. However, the cave pattern is difficult to describe using several models, let alone by one ideal model. With the progress of seismic fine description technology and mud logging, more accurate characterization of caves in carbonate reservoirs will help to accurately formulate the plugging scheme and greatly improve the success rate of plugging technology. Additionally, the engineering risks of this technology, such as plugging the coiled tubing, need to be further studied

    Numerical Simulation of Bridging Ball Plugging Mechanism in Fractured-Vuggy Carbonate Reservoirs

    No full text
    Pores, fractures, caves, and other storage spaces are commonly distributed in fractured-vuggy carbonate reservoirs. During the drilling process, more than half of all drill-in fluid loss issues are caused by developed caves. Cave scales range from centimeters to meters, making leak prevention increasingly difficult through the use of traditional technologies. Currently, there is still high demand for the understanding of feasible loss control techniques, especially in fractured-vuggy carbonate reservoirs. Multistage Bridge Plugging (MBP) technology has facilitated pioneering experiments in many oilfields, but the success rate of plugging is less than 50%, and the effects of plugging are uncontrollable and difficult to predict. This is due to a lack of clarity regarding the plugging mechanism and the key controlling factors. In this study, we used the Discrete Element Method (DEM) simulation method to investigate the controlling factors of MBP technology, and analyzed its applicable conditions. We found that the prerequisite for the success of MBP is the presence of a constricted throat near the wellbore when drilling the well hole; the first-stage bridging ball is the key to the success of MBP. Larger ball radius, cave inclination and initial flow rate, and lower ball velocity are beneficial to the first-stage bridging. All discussion in this research is based on the ideal situation. However, the cave pattern is difficult to describe using several models, let alone by one ideal model. With the progress of seismic fine description technology and mud logging, more accurate characterization of caves in carbonate reservoirs will help to accurately formulate the plugging scheme and greatly improve the success rate of plugging technology. Additionally, the engineering risks of this technology, such as plugging the coiled tubing, need to be further studied

    Lithium Deposition-Induced Fracture of Carbon Nanotubes and Its Implication to Solid-State Batteries

    No full text
    The increasing demand for safe and dense energy storage has shifted research focus from liquid electrolyte-based Li-ion batteries toward solid-state batteries (SSBs). However, the application of SSBs is impeded by uncontrollable Li dendrite growth and short circuiting, the mechanism of which remains elusive. Herein, we conceptualize a scheme to visualize Li deposition in the confined space inside carbon nanotubes (CNTs) to mimic Li deposition dynamics inside solid electrolyte (SE) cracks, where the high-strength CNT walls mimic the mechanically strong SEs. We observed that the deposited Li propagates as a creeping solid in the CNTs, presenting an effective pathway for stress relaxation. When the stress-relaxation pathway is blocked, the Li deposition-induced stress reaches the gigapascal level and causes CNT fracture. Mechanics analysis suggests that interfacial lithiophilicity critically governs Li deposition dynamics and stress relaxation. Our study offers critical strategies for suppressing Li dendritic growth and constructing high-energy-density, electrochemically and mechanically robust SSBs

    Reviving the rock-salt phases in Ni-rich layered cathodes by mechano-electrochemistry in all-solid-state batteries

    No full text
    The rock-salt phase (RSP) formed on the surface of Ni-rich layered cathodes in liquid-electrolyte lithium-ion batteries is conceived to be electrochemically "dead". Here we show massive RSP forms in the interior of LiNixMnyCo(1βˆ’x-y)O2 (NMC) crystals in sulfide based all solid state batteries (ASSBs), but the RSP remains electrochemically active even after long cycles. The RSP and the layered structure constitute a two-phase mixture, a material architecture that is distinctly different from the RSP in liquid electrolytes. The tensioned layered phase affords an effective percolation channel into which lithium is squeezed out of the RSPs by compressive stress, rendering the RSPs electrochemically active. Consequently, the ASSBs with predominant RSP in the NMC cathode deliver remarkable long cycle life of 4000 cycles at high areal capacity of 4.3 mAh/cm2. Our study unveils distinct mechano-electrochemistry of RSPs in ASSBs that can be harnessed to enable high energy density and durable ASSBs
    corecore