15 research outputs found

    Multiple Target, Multiple Type Filtering in the RFS Framework

    Full text link
    A Multiple Target, Multiple Type Filtering (MTMTF) algorithm is developed using Random Finite Set (RFS) theory. First, we extend the standard Probability Hypothesis Density (PHD) filter for multiple types of targets, each with distinct detection properties, to develop a multiple target, multiple type filtering, N-type PHD filter, where N2N\geq2, for handling confusions among target types. In this approach, we assume that there will be confusions between detections, i.e. clutter arises not just from background false positives, but also from target confusions. Then, under the assumptions of Gaussianity and linearity, we extend the Gaussian mixture (GM) implementation of the standard PHD filter for the proposed N-type PHD filter termed the N-type GM-PHD filter. Furthermore, we analyze the results from simulations to track sixteen targets of four different types using a four-type (quad) GM-PHD filter as a typical example and compare it with four independent GM-PHD filters using the Optimal Subpattern Assignment (OSPA) metric. This shows the improved performance of our strategy that accounts for target confusions by efficiently discriminating them

    Joint Person Identity, Gender and Age Estimation from Hand Images using Deep Multi-Task Representation Learning

    Full text link
    In this paper, we propose a multi-task representation learning framework to jointly estimate the identity, gender and age of individuals from their hand images for the purpose of criminal investigations since the hand images are often the only available information in cases of serious crime such as sexual abuse. We investigate different up-to-date deep learning architectures and compare their performance for joint estimation of identity, gender and age from hand images of perpetrators of serious crime. To overcome the data imbalance and simplify the age prediction, we create age groups for the age estimation. We make extensive evaluations and comparisons of both convolution-based and transformer-based deep learning architectures on a publicly available 11k hands dataset. Our experimental analysis shows that it is possible to efficiently estimate not only identity but also other attributes such as gender and age of suspects jointly from hand images for criminal investigations, which is crucial in assisting international police forces in the court to identify and convict abusers.Comment: arXiv admin note: text overlap with arXiv:2209.0482

    Machine Learning in Oil and Gas Exploration: A Review

    Get PDF
    A comprehensive assessment of machine learning applications is conducted to identify the developing trends for Artificial Intelligence (AI) applications in the oil and gas sector, specifically focusing on geological and geophysical exploration and reservoir characterization. Critical areas, such as seismic data processing, facies and lithofacies classification, and the prediction of essential petrophysical properties (e.g., porosity, permeability, and water saturation), are explored. Despite the vital role of these properties in resource assessment, accurate prediction remains challenging. This paper offers a detailed overview of machine learning’s involvement in seismic data processing, facies classification, and reservoir property prediction. It highlights its potential to address various oil and gas exploration challenges, including predictive modelling, classification, and clustering tasks. Furthermore, the review identifies unique barriers hindering the widespread application of machine learning in the exploration, including uncertainties in subsurface parameters, scale discrepancies, and handling temporal and spatial data complexity. It proposes potential solutions, identifies practices contributing to achieving optimal accuracy, and outlines future research directions, providing a nuanced understanding of the field’s dynamics. Adopting machine learning and robust data management methods is crucial for enhancing operational efficiency in an era marked by extensive data generation. While acknowledging the inherent limitations of these approaches, they surpass the constraints of traditional empirical and analytical methods, establishing themselves as versatile tools for addressing industrial challenges. This comprehensive review serves as an invaluable resource for researchers venturing into less-charted territories in this evolving field, offering valuable insights and guidance for future research

    Hand-Based Person Identification using Global and Part-Aware Deep Feature Representation Learning

    Get PDF
    In cases of serious crime, including sexual abuse, often the only available information with demonstrated potential for identification is images of the hands. Since this evidence is captured in uncontrolled situations, it is difficult to analyse. As global approaches to feature comparison are limited in this case, it is important to extend to consider local information. In this work, we propose hand-based person identification by learning both global and local deep feature representation. Our proposed method, Global and Part-Aware Network (GPA-Net), creates global and local branches on the conv-layer for learning robust discriminative global and part-level features. For learning the local (part-level) features, we perform uniform partitioning on the conv-layer in both horizontal and vertical directions. We retrieve the parts by conducting a soft partition without explicitly partitioning the images or requiring external cues such as pose estimation. We make extensive evaluations on two large multi-ethnic and publicly available hand datasets, demonstrating that our proposed method significantly outperforms competing approaches

    Online multi-target visual tracking using a HISP filter

    No full text
    We propose a new multi-target visual tracker based on the recently developed Hypothesized and Independent Stochastic Population (HISP) filter. The HISP filter combines advantages of traditional tracking approaches like multiple hypothesis tracking (MHT) and point-process-based approaches like probability hypothesis density (PHD) filter, and has a linear complexity while maintaining track identities. We apply this filter for tracking multiple targets in video sequences acquired under varying environmental conditions and targets density using a tracking-by-detection approach. In addition, we alleviate the problem of two or more targets having identical label taking into account the weight propagated with each confirmed hypothesis. Finally, we carry out extensive experiments on Multiple Object Tracking 2016 (MOT16) benchmark dataset and find out that our tracker significantly outperforms several state-of-the-art trackers in terms of tracking accuracy

    Occlusion-robust online multi-object visual tracking using a GM-PHD filter with CNN-based re-identification

    No full text
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.We propose a novel online multi-object visual tracker using a Gaussian mixture Probability Hypothesis Density (GM-PHD) filter and deep appearance learning. The GM-PHD filter has a linear complexity with the number of objects and observations while estimating the states and cardinality of time-varying number of objects, however, it is susceptible to miss-detections and does not include the identity of objects. We use visual-spatio-temporal information obtained from object bounding boxes and deeply learned appearance representations to perform estimates-to-tracks data association for target labeling as well as formulate an augmented likelihood and then integrate into the update step of the GM-PHD filter. We also employ additional unassigned tracks prediction after the data association step to overcome the susceptibility of the GM-PHD filter towards miss-detections caused by occlusion. Extensive evaluations on MOT16, MOT17 and HiEve benchmark data sets show that our tracker significantly outperforms several state-of-the-art trackers in terms of tracking accuracy and identification

    Development of a N-type GM-PHD Filter for Multiple Target, Multiple Type Visual Tracking

    No full text
    We propose a new framework that extends the standard Probability Hypothesis Density (PHD) filter for multiple targets having N2N\geq2 different types based on Random Finite Set theory, taking into account not only background clutter, but also confusions among detections of different target types, which are in general different in character from background clutter. Under Gaussianity and linearity assumptions, our framework extends the existing Gaussian mixture (GM) implementation of the standard PHD filter to create a N-type GM-PHD filter. The methodology is applied to real video sequences by integrating object detectors' information into this filter for two scenarios. For both cases, Munkres's variant of the Hungarian assignment algorithm is used to associate tracked target identities between frames. This approach is evaluated and compared to both raw detection and independent GM-PHD filters using the Optimal Sub-pattern Assignment metric and discrimination rate. This shows the improved performance of our strategy on real video sequences.Comment: arXiv admin note: text overlap with arXiv:1705.0475

    MRI-PET Registration with Automated Algorithm in Pre-clinical Studies

    No full text
    Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) automatic 3-D registration is implemented and validated for small animal image volumes so that the high-resolution anatomical MRI information can be fused with the low spatial resolution of functional PET information for the localization of lesion that is currently in high demand in the study of tumor of cancer (oncology) and its corresponding preparation of pharmaceutical drugs. Though many registration algorithms are developed and applied on human brain volumes, these methods may not be as efficient on small animal datasets due to lack of intensity information and often the high anisotropy in voxel dimensions. Therefore, a fully automatic registration algorithm which can register not only assumably rigid small animal volumes such as brain but also deformable organs such as kidney, cardiac and chest is developed using a combination of global affine and local B-spline transformation models in which mutual information is used as a similarity criterion. The global affine registration uses a multi-resolution pyramid on image volumes of 3 levels whereas in local B-spline registration, a multi-resolution scheme is applied on the B-spline grid of 2 levels on the finest resolution of the image volumes in which only the transform itself is affected rather than the image volumes. Since mutual information lacks sufficient spatial information, PCA is used to inject it by estimating initial translation and rotation parameters. It is computationally efficient since it is implemented using C++ and ITK library, and is qualitatively and quantitatively shown that this PCA-initialized global registration followed by local registration is in close agreement with expert manual registration and outperforms the one without PCA initialization tested on small animal brain and kidney
    corecore