78 research outputs found

    Managing Interval Resources in Automated Planning

    Get PDF
    In this paper RDPPLan, a model for planning with quantitative resources specified as numerical intervals, is presented. Nearly all existing models of planning with resources require to specify exact values for updating resources modified by actions execution. In other words these models cannot deal with more realistic situations in which the resources quantities are not completely known but are bounded by intervals. The RDPPlan model allow to manage domains more tailored to real world, where preconditions and effects over quantitative resources can be specified by intervals of values, in addition mixed logical/quantitative and pure numerical goals can be posed. RDPPlan is based on non directional search over a planning graph, like DPPlan, from which it derives, it uses propagation rules which have been appropriately extended to the management of resource intervals. The propagation rules extended with resources must verify invariant properties over the planning graph which have been proven by the authors and guarantee the correctness of the approach. An implementation of the RDPPlan model is described with search strategies specifically developed for interval resources

    Using optimisation meta-heuristics for the roughness estimation problem in river flow analysis

    Get PDF
    open access articleClimate change threats make it difficult to perform reliable and quick predictions on floods forecasting. This gives rise to the need of having advanced methods, e.g., computational intelligence tools, to improve upon the results from flooding events simulations and, in turn, design best practices for riverbed maintenance. In this context, being able to accurately estimate the roughness coefficient, also known as Manning’s n coefficient, plays an important role when computational models are employed. In this piece of research, we propose an optimal approach for the estimation of ‘n’. First, an objective function is designed for measuring the quality of ‘candidate’ Manning’s coefficients relative to specif cross-sections of a river. Second, such function is optimised to return coefficients having the highest quality as possible. Five well-known meta-heuristic algorithms are employed to achieve this goal, these being a classic Evolution Strategy, a Differential Evolution algorithm, the popular Covariance Matrix Adaptation Evolution Strategy, a classic Particle Swarm Optimisation and a Bayesian Optimisation framework. We report results on two real-world case studies based on the Italian rivers ‘Paglia’ and ‘Aniene’. A comparative analysis between the employed optimisation algorithms is performed and discussed both empirically and statistically. From the hydrodynamic point of view, the experimental results are satisfactory and produced within significantly less computational time in comparison to classic methods. This shows the suitability of the proposed approach for optimal estimation of the roughness coefficient and, in turn, for designing optimised hydrological models

    Learning Tversky Similarity

    Full text link
    In this paper, we advocate Tversky's ratio model as an appropriate basis for computational approaches to semantic similarity, that is, the comparison of objects such as images in a semantically meaningful way. We consider the problem of learning Tversky similarity measures from suitable training data indicating whether two objects tend to be similar or dissimilar. Experimentally, we evaluate our approach to similarity learning on two image datasets, showing that is performs very well compared to existing methods

    A Propositional CONEstrip Algorithm

    Get PDF
    We present a variant of the CONEstrip algorithm for checking whether the origin lies in a finitely generated convex cone that can be open, closed, or neither. This variant is designed to deal efficiently with problems where the rays defining the cone are specified as linear combinations of propositional sentences. The variant differs from the original algorithm in that we apply row generation techniques. The generator problem is WPMaxSAT, an optimization variant of SAT; both can be solved with specialized solvers or integer linear programming techniques. We additionally show how optimization problems over the cone can be solved by using our propositional CONEstrip algorithm as a preprocessor. The algorithm is designed to support consistency and inference computations within the theory of sets of desirable gambles. We also make a link to similar computations in probabilistic logic, conditional probability assessments, and imprecise probability theory

    Metodi computazionali per l'inferenza bayesiana con dati incompleti

    No full text
    Dottorato di ricerca in metodi matematici e statistici per la ricerca economica e sociale. 8. ciclo. A.a. 1994-95. Relatore G. Galmacci. Coordinatore A. ForcinaConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    A Lattice Representation of Independence Relations

    No full text
    Independence relations in general include exponentially many statements of independence, that is, exponential in terms of the number of variables involved. These relations are typically fully characterised however, by a small set of such statements and an associated set of derivation rules. While various computational problems on independence relations can be solved by manipulating these smaller sets without the need to explicitly generate the full relation, existing algorithms are still associated with often prohibitively high running times. In this paper, we introduce a lattice representation for sets of independence statements, which provides further insights in the structural properties of independence and thereby renders the algorithms for some well-known problems on independence relations less demanding. By means of experimental results, in fact, we demonstrate a substantial gain in efficiency of closure computation of semi-graphoid independence relations

    Towards a New Generation ACO-Based Planner

    No full text
    corecore