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MANAGING INTERVAL RESOURCES IN AUTOMATED PLANNING 
V.Poggioni, A.Milani, M.Baioletti 

 
Abstract: In this paper RDPPLan, a model for planning with quantitative resources specified as numerical 
intervals, is presented. Nearly all existing models of planning with resources require to specify exact values for 
updating resources modified by actions execution. In other words these models cannot deal with more 
realistic situations in which the resources quantities are not completely known but are bounded by intervals. 
The RDPPlan model allow to manage domains more tailored to real world, where  preconditions and effects 
over quantitative resources can be specified by intervals of values, in addition mixed logical/quantitative and 
pure numerical goals can be posed. RDPPlan is based on non directional search over a planning graph, like 
DPPlan, from which it derives, it uses propagation rules which have been appropriately extended to the 
management of resource intervals. The propagation rules extended with resources must verify invariant 
properties over the planning graph which have been proven by the authors and guarantee the correctness of 
the approach. An implementation of the RDPPlan model is described with search strategies specifically 
developed for interval resources. 
Keywords: AI, Automated Planning, Planning with resources, Propagation rule, Search strategies.  

Introduction 
Various models have been proposed for extending the pure logical classical planning models in order to 
manage more real world features. A very promising issue toward this goal is the research line which aims to 
provide the planners with the ability of planning with resources. In this framework, in addition to the logical 
relationships among domain objects, operators and states, the planning models are able to cope with 
quantitative aspects of the world, such as actions which involves consumable/reusable resources, domain 
constraints on resources, goals involving quantities. 
Several planning models for resources management have been proposed for extending virtually all the most 
successful planner approaches; among them it is worth noticing  models UCPOP—like models [4],  
Graphplan-like [12], SAT—like  [15,16], and also HTN based approaches [5]. 
The types and features of the modelled resources are also varying from unary and discrete resources [13] to 
reusable resources [4] and conjunctive constraints over resources [6,9]. A different approach is that of 
planners specialised  in the management of time, as a quantitative resource; these planners allow the 
management of extension such as propositions which holds over time intervals , actions with durations and 
complex time numerical constraints [6,10]. The issue of a complex time management is beyond the scope of 
this work. 
It is worth noticing that the introduction of quantitative resources in a planning framework has brought into 
planning some typical issues of scheduling and CSP, such as optimisation search and constraints 
management. Moreover having quantitative resources also change the typical view a planning problem can be 
regarded to. At the simplest level there are “pure logical” problem goals which can be specified as in the 
classical framework , nevertheless the plan generation phase will have to take into account of resources 
precondition/effects; the problem can otherwise specify “mixed” logical/quantitative goals, or even “pure 
quantitative goals”, (e.g. consider the problem of finding a plan for the purely quantitative goals: Consume at 
least 100 calories, Produce 1 Billion profit etc.); finally pure/mixed “optimisation” goals can also be specified, 
where no logical or quantitative goals exist (e.g. consider the problem: “producing as much profit as you can”), 
this latter optimisation aspect has been incorporated in PDDL 2.1 [7]  where it is possible to specify an object 
function to be optimised. 
Models of planning with resources certainly represent an important step toward a more accurate model of the 
real world, but, on the other hand, most of the proposed models fail to give any account of the potential 
uncertainty which can affect the quantities related to resources. Many facts in a real world state can be 
described in a satisfactory way by a boolean proposition (e.g. (on A table) (open door) etc.), but  it is not very 
realistic to assume that an exact number can model the continuous quantities describing a given resource. 
Most models of planning  with resources allow to describe non exact quantities in preconditions, such as, for 
example, an interval of values that the resources can assume in order make the action to executable (e.g. the 
fuel must be between 10 and 30, the voltage must be between 210 and 230, this preconditions can be 
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modeled both in [12] as well in [9]), surprisingly the same planning models do not allow to specify intervals of 
values in action effects. In fact models of planning with resources admit updates and assignment operations 
which allow functional quantities (for example consumed_fuel can be functionally computed by distance * 
fuel_consumption)  but where the increment of the current resource level is a single well determined 
numerical value (e.g. consumed_fuel = distance * fuel_consumption = 12 * 0.25 =3 that is a single value ) 
[7,9,12]. Indeed, it seems to be an apparent contradiction that the semantics of preconditions can be also 
given in terms of non exact quantities, while the semantics of effects have to be given only in term of precise 
values. 
In this work we show how this gap between non exact preconditions and fully specified effects can be bridged 
by specifying in both cases quantities varying over intervals. RDPPlan, the model of planning with resources 
which we will describe, is based on DPPlan [1], a planner which uses a non directional search algorithm on 
the planning graph. RDPPlan is compatible with the resources model as described in standard PDDL 2.1, and 
extends it by allowing updates and assignments of quantities specified by intervals. 
In the following paragraphs, after recalling the main features of DPPlan, it is introduced RDPPlan, the 
planning model with resources, showing that the addition of resources management does not have a great 
impact on the overall DPPlan approach and on the planning graph structure. Resources management in 
RDPPlan is realized by the modification of propagation rules and the introduction of appropriate rules for 
failure detection caused by resources constraints violation. Moreover, the structure and the algorithms we 
provide for resources management can be easily extended for update operations which operate over 
intervals, as shown in the fourth paragraph. 
It is worth noticing that RDPPlan architecture is not committed to any particular search strategy (i.e. the 
resources management and failure detection is embedded into the propagation rules), the consequence is 
that search strategies can be easily added to RDPPlan. Strategies specifically developed for resources are 
described in paragraph five. 
Examples and experimental results show that this approach seems to be appropriate for modeling real world 
situations where the consumption/production of resources cannot be expressed by a single value (for 
example, assuming that fuel_consumption per Km is a non exact quantity which ranges between [0.25, 0.33], 
then consumed_fuel can be calculated as an interval by computing distance * fuel_consumption = 12 * 
[0.25,0.33] =    [3, 4]  ). 
Finally we point out some possible topics which are worth to be investigated in the RDPPlan framework, such 
as further strategies and heuristics for problems with resources, and further extensions to the resource model, 
like managements of fuzzy quantities. 

DPPlan and its propagation rules 

DPPlan is mainly based on GraphPlan [2]. With this planner it shares the same representation of disjunctive 
states, obtained by connecting facts and operators to form a graph, called planning graph. 
DPPlan has, with respect to GraphPlan and other related planners, like IPP [11] or STAN, a completely 
different method for searching a solution in the planning graph. 
The fundamental feature of DPPlan is that to each node of the graph a boolean value is assigned. An operator 
is true if it is executed, false if it is not. A fact is true if it is achieved by some operator, false otherwise. During 
the search phase a fact p can be true also if it is required by some operator o (p is a precondition of o) and 
false if it is required to be false (p is a negative precondition of o). This fact makes possible to use the 
propagation rules before the fact is really achieved and to cause, in the case, a backtracking earlier than it 
would be else obtained. 
However those two situations are very different: if a fact f is true because something requires it, then f must be 
seen as a (sub-)goal and the current plan cannot be correct if this fact is not reached by any action. Only 
when an action achieving f is added to the plan, then f is really “true”. The same distinction should be made 
between a fact which is really “false” (it has been deleted by some operator, or all of its achiever is false) and 
a fact required to be false (some action has it as a negative precondition).  
In order to distinguish these situations, a further value, called state, is assigned to each fact: 
• the state is “produced”, when the fact value is reached (either true or false), 
• the state is “consumed”, if the fact value is required (either true or false), and 
• the state is “produced-after-consumed” if the fact value has been required and then achieved.  
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This last value of state is useful during the backtracking phase. 
In the previous paper of DPPlan we have described the rules by which it is possible to propagate a choice on 
the value of a node in the graph. These rules show how to update the other nodes of graph because of that 
choice. The operations of changing state and value of a node are named according to the type of changing 
and to the type of node they are applied. 
The operation use sets the value of an operator node to true, while the operation exclude sets it to false. 
The operation consume sets the value of a fact node to true and the state to consumed, produce sets the 
value to true and the state to produced (or produced-after-consumed), consume-not sets the value to false 
and the state to consumed, destroy sets the value to false and the state to produced (or produced-after-
consumed). 
All of these operations can fail if they try to give a different value to an already valued node (e.g. destroy and  
consume on the same fact) or can be ignored if they try to give the same (or compatible) value or state (e.g. 
produce and then consume on the same fact). For further details see the original paper [1]. 
For an operator o, In(o), NotIn(o), Out(o) and NotOut(o) are respectively the list of its positive preconditions, 
negative preconditions, positive effects and negative effects. For a fact f, In(f), NotIn(f), Out(f) and NotOut(f) 
are respectively the list of the operators which have f as a positive effect, as a negative effect, as a positive 
precondition and as a negative precondition; moreover npp(f) and npd(f) are respectively the number of 
possible producer (destroyer), i.e. the number of elements of list In and NotIn whose value is still undefined. 
Finally, for any node n, Mutex(n) is the list of the nodes exclusive of n. 
These propagation rules update the state and the value to the node they are applied, as well as the goal list. 
Note that without any particular additional procedure, DPPlan is able to solve problem with negative 
preconditions and goals, and with temporally qualified “initial states”, like the fact f is true at time t > 0, and 
goals, like the goal g has to be achieved at time t < tmax. 
The main algorithm operates in way resembling the celebrate Davis-Putnam algorithm for propositional logic. 
At the beginning all the variables receive the value undefined, then the procedure produce is performed for all 
the facts in the initial state, consume is performed for all the positive goals, and consume-not is performed for 
all the negative goals. 
In its main loop, the algorithm chooses an undefined variable v, tries to set its value to one of the boolean 
values (e.g. true) until it finds a solution (no fact is in the state consumed), or some propagation fails, in this 
case a backtracking phase is performed by undoing all the propagations done after v and tries to set the value 
v to the opposite value (e.g. false). If a failure is obtained again, v can be neither true nor false, therefore the 
backtracking stops until the previously tried variable is unset: now the value of this variable is reversed and 
the search goes on. Note that when the algorithm has tried both the value for the first chosen variable, without 
reaching a solution, the search phase is ended, the graph is augmented with all the new applicable operators 
and all the new facts they produce, in a way similar to the expansion phase of GraphPlan, and a new search 
phase is performed. 
What is completely free in our algorithm is how to choose what variable to try next and which value to try first. 
According to the method used, the planner can perform a forward search, a backward-chain search, a 
bidirectional search or simply a non directional search. 
In the original paper [1] we have listed several ways of choosing a variable, essentially an operator to be tried 
to use, and then to exclude.  

RDDPlan: Planning with numerical resources in DPPlan 

RDPPlan is the extension of DPPlan to handle numerical resources. In the model together with the logical 
propositions, the use of numerical variables is allowed. Each numerical variable, called resource, can be cited 
as in preconditions and goals as well as in effects and initial states. Conforming to the PDDL 2.1 [7], 
resources are represented as a numerical functions whose parameters can be domain constants or action 
parameters. 
Preconditions and goals 
In preconditions and goals it is allowed to use conditions like (compare resource value) where 
compare is a comparison operator (>, <, >=, <=, =) and value can be an expression 
involving action parameters, numerical constants and arithmetic operators. 
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Since we do not allow for disjunctive preconditions and goals, several constraints on the same resource r 
reduce to a unique real interval, possibly empty, indicated with PA,r for the precondition of action A and with Gr 
for goals. These intervals are possibly unlimited in left and/or in right side. 
Initial state and effects 
In the initial state the resources are initialized by the proposition (= resource value) where now the 
value can only be a numerical constant.  
In the effects a resource can be changed by proposition (change resource value) where 
change can be one of the operators assign, increase, decrease and value is an 
expression as in the preconditions. We indicate the value added of action A to resource r with EA,r, intending 
EA,r =value for increase and EA,r = -value for decrease. For an action A which does not change a resource r we 
treat A as an increase operator of value 0, i.e. EA,r =0 . 
As a syntactic sugar we allow to use, while expressing preconditions and effects, in the expressions called 
value some other resources, provided they are static, i.e. initialized in the initial state, but not changed by any 
action. A static resource is a sort of constant which remains unchanged during the plan, like weight function in 
domain Depots.  
This restriction has the main effect that each resource can be changed independently from the others. 
Allowing to cite other (non static) resources in the preconditions would have generated more complex 
admissible resource domains, not reducible to the cartesian product of real intervals. On the other hand if an 
effect on resource r could depend on the value of some other (non static) resource, some interaction between 
resources would have arisen which are difficult to handle (e.g. increasing a resource can cause to another 
resource to decrease). 
Realized value and desired interval 
Associated to each resource r and each time level t, a numerical value Rrt and a real interval Drt is computed 
during the planning phase. Every time an action is selected by the search procedure, Rrt and Drt  are updated 
for every resource r used by the action and for every time level t greater or equal to the time level at which the 
action is selected. The previous values of Rrt and Drt  are restored during the backtracking phase.  
The number Rrt represents the current value of the resource r at time t realized by the actions since now 
inserted in the plan. At the start of search procedure, for each resource r and for every time t, Rrt is set to the 
value specified at the initial state. 
The interval Drt, called “desired interval”, contains all the admissible values for the resource r that allow the 
execution of all the actions selected at time level t. At the start of search procedure for each resource r and for 
every time t <T (T is the last time level), Drt is set to [-∞,+∞], while for each resource r, DrT is set to Gr, the 
interval specified by the goals.  
Solution plans and executability 
Definition 1  The obvious sufficient and necessary condition for a plan to be executable and to be a solution of 
the given planning problem is that for each resource r and for each time level t the condition  Rrt ∈Drt  holds.  
Before describing the rules with which  Rrt and Drt  are updated, we must define when two or more actions are 
executable at the same time level. We use the same concept of simultaneous executability as expressed in 
[7,15]. 
Definition 2  A set of actions A1, A2,…, Am is simultaneously executable if for every permutation Π of the 
actions in the set  AΠ(1), AΠ(2) , …, AΠ(m) 

1) AΠ(1)  is executable in the current state, AΠ(2) is executable in the state after the execution of AΠ(1), AΠ(3) is 
executable in the state after the execution of AΠ(1) and then AΠ(2), and so on,  
2) the effect over the resources is always the same. 
As a straightforward consequence of the second condition, an assignment on resource r is not simultaneously 
executable with any action changing r (additive operator).  
The question remains open whether to allow an action changing r to be simultaneous with any action having a 
precondition with respect to r. Our approach is to allow simultaneity whenever the change does not affect the 
executability. 
Proposition 1   It is easy to prove that two additive actions A1 and A2 are simultaneously executable (with 
respect to r) if, let [α1,β1]=PA1,r and [α2,β2]=PA2,r be respectively the precondition intervals and let k1=EA1,r and 
k2=EA2,r  their effect on r, we have α ≤ β where α=max{α1,α1-k2,α2,α2-k1} and β=min{β1, β1-k2, β2, β2-k1}. In 
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the positive case we set Drt=[α, β] if actions A1 and A2 are the only actions to be executed at time t. Otherwise 
A1 and A2 are marked to be mutually exclusive. 
The generalization to the case of many additive (over the same resource r) actions A1, A2, …, Am is somehow 
straightforward. 
Proposition 2   Called   [αi,βi]=PAi,r the interval precondition and ki=EAi,r their effects, for i=1,…,m, we have that 
the action Ai's are simultaneously executable (with respect to r) if α ≤ β where α = max {αi-kmi : i=1,…,m }, β 
= min{βi-kpi : i=1,…,m} and    ∑

>≠

=
0, jkij

ji kkp  and   ∑
<≠

=
0, jkij

ji kkm for i=1,…,m.   

In the positive case Drt =[α ,β] if the actions Ai's are the only actions to be executed at time t..  
α and β can be computed in linear time (in the number of resources and actions) by storing (and keeping 
updated) the values ∑

>

=
0

0
jk

jkkp and ∑
<

=
0

0
jk

jkkm . 

The case of several additive actions includes the case of simultaneous execution of additive actions on 
resource r  (possibly none) with other actions which do not change r. In the particular case, where all the 
actions do not change r, Drt reduces to the intersection of all the precondition intervals. 
A case not yet covered is the simultaneous execution of an assignment on r, say A1 whose assigns to r the 
value v, with with actions A2,…,Am which do not change r. It is easy to see that A1,A2,…,Am are simultaneous 
executable (with respect to r) if the intersection of all the precondition intervals is not empty and contains v. 
 After a new action A is selected to be used at time t, we must check if it is simultaneously executable with the 
already selected actions at time t, by computing for each resource r the quantities α(r) and β(r). Only when 
each of these interval is not empty, then the desired interval for r is set to be [α(r), β(r)]. Moreover an 
incremental way, which takes only a constant time to be computed, of updating Drt, after the use of a new 
additive operator A, is the following. 
Proposition 3   If  Drt = [α,β ], PA,r = [a,b] and EA,r =k, then the updated desired interval is [α',β '] where  
α' = max {a - km0, α - min{k ,0} } and β ' = min { b - kp0, β - max{k ,0} }. 
Updating the values Rrt is done by recomputing them for every resource changed by A, starting from time t+1 
and ending at the first time where an assignment over r is selected. This computation can be efficiently done 
by storing and keeping updated the total amount to be added to r, computed considering all the actions 
selected since now.  

Extension to interval resources 
A very straightforward, yet significant, extension of the simple model above explained is to allow for non   
completely specified initial states and effects. 
Interval on the initial states and effects 
Instead of initializing a resource with a unique real value, we allow to specify a real interval Ir as a range for 
the initial value of the resource r. The planner operates in an under-specified domain in which the value of 
some resource is not exactly known, but it is bound to be in an interval. Suppose we do not know exactly how 
much gasoline is in the tank of our car: we just know that it surely the real amount is between 5 and 10 liters. 
Similarly it is possible to have under-specified effects of any operator: the value which is added, subtracted or 
assigned to the current value of a resource is not exactly known, but only a lower and an upper bound is 
specified. Imagine that the car in the previous example, we do not know which is the exact consumption: all 
we know is that the car can travel from 10 to 15 kilometers per liter. 
In this enhanced model, the real quantities EA,r and Rrt are therefore replaced by real intervals, which  cannot 
be unlimited in the left or in the right side. The intervals Rrt are initialized with Ir, the intervals specified in the 
initial state description,  and are updated according the following simple rules, where the current interval for Rrt 
is [γ,δ], the operator to be executed is A and  EA,r = [ emin, emax ] : if A is ASSIGN Rrt becomes [ emin, emax ], if A 
is INCREASE Rrt becomes  [ γ +emin,δ + emax ] and if A is DECREASE Rrt becomes  [ γ - emax,δ - emin ].  
Solution plans and executability 
The definition of what solution plan is meant is similar to the definition described in the previous section.  
Definition 3   For this model the necessary and sufficient condition for a plan to be a solution of a given 
planning problem is that for each resource r and time level t,  Rrt ⊆ Drt. 
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The intended semantics of this meaning of the term solution plan Π is that if for every possible way of 
replacing each interval effect EA,r with a number eA,r ∈ EA,r and of replacing each initial interval Ir with a 
number ir ∈ Ir, the problem  so obtained, which now is conform to the previous model, is solved by Π, 
according to the semantics expressed in the previous section. Expressed in other terms, a solution plan must 
solve every possible problem that is allowed by the constraints specified in the initial state and in the effects 
description. 
The update rules for desired interval are similar to what we have seen in the previous section.   
Proposition 4   Suppose that A1 and A2 be two additive actions with  precondition intervals  PA1,r =[α1,β1]  and  
PA2,r =[α2,β2]  and with effect intervals EA1,r=[emin,1,emax,1] and EA2,r=[emin,2,emax,2] respectively.  If α ≤ β, where  
α = max{α1,α1-emin,2,α2,α2-emin,1} and β = min{β1, β1-emax,2, β2, β2-emax,1}, then A1,A2 are simultaneously 
executable. 
The generalization to the cases with m additive or multiplicative actions are the following. 
Proposition 5   Called PAi,r =[αi, β i]  the precondition intervals,  for i=1,…,m and EAi,r=[emin,i,emax,i]  the effect 
intervals over r for i=1,…,m, we have that the action Ai's are simultaneously executable if α ≤ β, where  
α = max {αi-kmi : i=1,…,m }, β = min {βi-kpi : i=1,…,m} and  ∑

>≠

=
0,
max,

max, jeij
ji ekp  and  ∑

<≠

=
0,
min,

min, jeij
ji ekm . 

Strategies on Resources 

In this section we present the strategies that we have defined for achieving the goals over resources. These 
strategies are necessary to solve “pure numerical problems”, i.e. problems with goals only on resources. The 
methods that implement these strategies are combined with the ones for solving logical goals, by evaluating 
the difficulties of resources and logical goals and selecting the most difficult goal to solve. 
Strategy for numerical resources 
For each time step t and for each resource r, we check if the condition Rrt ∈Drt holds: the negative cases are 
the goals on resources. An action that can help solving a goal on resource r at time t can be chosen according 
to the following rules. 
First, the algorithm searches for an action that can achieve the goal in one only step, preferring, in the case of 
many available options, the action situated at the level nearest to t. If such an action does not exist, we 
choose an increaser (actions which make Rrt bigger) or a decreaser (actions which make Rrt smaller) 
according to the case. In the detail, a first search is performed for all those actions A present at any time τ < t 
such that the updated value (if A would be executed) of Rrt, say R’rt, verifies the condition R’rt ∈ Drt . Among 
those, the action A with the highest τ is selected, by performing the search starting from the time-step t−1 and 
going backward: the first action found is chosen. 
If the first search fails, the algorithm chooses an action that can permit us to come closer to the goal. Called 
[α,β]  the interval Drt, the algorithm selects an increaser A, if Rrt < α, or a decreaser A, if Rrt > β, that 
minimizes { }βα −− rtrt RR ','min . 
Strategy for interval resources 
When we work with resources as intervals using the “interval algebra” explained in a previous section, we 
have to handle with real intervals whose width can in general only grow, except when an assignment is 
performed. In fact it is obvious that any numerical operation between intervals produce as a result an interval 
which has a width larger than the original widths. 
The following example can show this characteristic.  If we have in the tank an amount of fuel that we do not 
know 
 exactly, but that we know be between 10 and 15 liters (this is a case of incomplete knowledge in initial state) 
and we take from an another tank an unknown amount of fuel between 12 and 16 liters (example of non 
deterministic effects over resource), then the minimum amount of fuel in the first tank is 22 liters and the 
maximum is 31 liters. So, in the notations here used, from the rule Rrt + EA,r = Rr,t+1, we will obtain [10,15] + 
[12,16] = [22,31]. This means that we have at time step t, before the action application, a realized interval with 
width 5 and then, at the next time-step t +1, an interval with width 9. 
 If you think that the width of realized interval represents, in some sense, the indetermination on resource 
value, we have that the larger the interval width, the larger the indetermination. Moreover note that if the width 
of the realized interval is large, it is more difficult that the solution conditions Rrt ⊂ Drt will hold. Let |R| denote 
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the width of interval R=[a,b], i.e. |R|=b-a. The first control to do is on the widths of realized and desired 
intervals. 

1) If |Rrt| > |Drt| an assignment which assigns an interval with width less than |Drt| is the only possible 
choice. If there are many such assignments, the algorithm chooses that one which assigns the 
interval with the least width. If there are no assignments with this property, a backtracking is 
necessary.  

2) If |Rrt| ≤ |Drt| the algorithm tries to solve this goal using a procedure similar to that described in the 
previous section. Now the choice criteria takes into account the distance between Drt and R'rt (which 
is the realized interval updated after the execution of the action to be evaluated) and their widths. 

The previously described criteria can be implemented by defining two preference functions, one for the 
interval widths, and one for the distance between intervals, and by searching for an action that maximizes a 

linear combination of the functions. The first function is 
||

|'|||
),(

rt

rtrt
rtW D

RD
DAf

−
=  and gives to each 

action A a numerical positive score between 0 and 1. 
The second function is a decreasing function of the distance between the middle points of the two intervals 

|)|
2
1exp(),( βαδγ −−+−=rtD DAf  where [α,β] = Drt and [γ,δ] = R'rt. 

Also this function gives to each action A a numerical positive score between 0 and 1. 
Experimental results show that good values for the ratio c1/c2 of the coefficients of the linear combination 

),(),(),( 21 rtDrtWrt DAfcDAfcDAf += are between 1 and 2. 
A theoretical justification is that fW is slightly more influent for driving the search algorithm, because it can be 
useless to get closer to the desired interval if the width of the realized interval is too large. 

Conclusion 
RDDPlan a model of planning with interval resources based on propagation rules has been described. This 
models seems to be more adequate than existing models of planning in order to describe real world operators 
which uses resources because it does not require a complete knowledge of the quantity to be updated, but an 
interval boundary.  
The main contribution to RDPPlan comes from [1], whose propagation and failure rules have been extended 
with interval management. Other related works share with it a similar planning graph structure with a different 
semantics for resources and no management of intervals [12,15]. Although an actual planner and strategies 
for resources have been implemented on the basis of the proposed model, RDPPlan can be considered a 
platform on which strategies and heuristics for planning with resources can be experimented. Further 
investigations and experiments are planned in order to develop more accurate heuristics and strategies which 
takes into account of resources, moreover, in order to provide a meaningful evaluation it will be also required 
the development of a set of significant benchmarks for planning domains with interval resources. 
Finally it is worth investigating further extensions to the resources model more accurate with respect to the 
uncertainty in the real world e.g. intervals with given probability distribution over resources values and fuzzy 
quantities. 

Bibliography 

[1] M.Baioletti,S.Marcugini,A.Milani.  DPPlan: an algorithm for fast solution extraction from a planning graph.  In 
Proc. of AIPS-00, 2000. 

[2] A.Blum,M.Furst.  Fast  planning through planning graph analisys.  Artificial Intelligence (90):281-300, 1997. 
[3] B.Bonet,H.Geffner.  Planning as heuristic search.  Artificial Intelligence 129, 2001. 
[4] S.Chien et al. ASPEN automated planning and scheduling for space mission operation. In Proc of 

SpaceOps2000, 2000. 
[5] K.Currie,A.Tate.  O-Plan: The open planning architecture.  Artificial Intelligence (52):49-86, 1991. 
[6] M.Do,S.Kambhampati.  Sapa: A domain indipendent heuristic metric temporal planner. In Proc. of ECP-01, 2001 
[7] M.Fox,D.Long.  PDDL 2.1: An extension to PDDL for expressing temporal planning domains. Forthcoming in 

JAIR special issue on 3rd International Planning Competition  



International Journal "Information Theories & Applications" Vol.10 

 

218 

[8] J.Hoffmann,B.Nebel.  The FF planning system: Fast plan generation through heuristic search. Journal of Artificial 
Intelligence Research (14): 253-302, 2001. 

[9] J.Hoffmann. Extending FF to numeric state variables. In Proc. of ECAI-02, 2002. 
[10] A.Jonsson et al.  Planning in the interplanetary space : theory and practice. In Proc. of AIPS-00, 2000. 
[11] J.Koehler,B.Nebel,J.Hoffmann,Y.Dimopoulos.  Extending planning graphs to an ADL subset. In Proc. of ECP-97, 

1997. 
[12] J.Koehler.  Planning under resource constraints.  In Proc. of ECAI-98, 1998. 
[13] P.Laborie,M.Ghallab.  Planning with sharable resource constraints.  In Proc of IJCAI-95, 1995. 
[14] X.Nguyen,S.Kambhampati,R.S.Nigenda.  Planning graph as the basis for deriving heuristics for plan synthesis by 

state space and csp search.  ASU Technical Report, 2002. 
[15] J.Rintanen,H.Jungholt.  Numeric state variables in constraint based planning. In Proc. of ECP-99, 1999. 
[16] S.Wolfman,D.Weld.  The LPSAT engine and its application  to resource planning.  In Proc. of IJCAI-99, 1999. 

Authors information 

Marco Baioletti – Dipartimento di Metodi Quantitativi, Univeristà degli Studi di Siena, P.zza S.Francesco 5, 
Siena, Italy  
Alfredo Milani  -  Dipartmento di Matematica e Informatica, Università degli studi di Perugia, Via Vanvitelli, 
06100 Perugia, Italy 
Valentina Poggioni – Dipartimento di informatica e Automazione, Università degli Studi di Roma Tre, Via 
della Vasca Navale 79, 00146 Roma, Italy 

 

А PLANNING MODEL WITH RESOURCES IN E-LEARNING 
G. Totkov, E. Somova 

 
Abstract: This work proposes a model for planning of education based on resources and layers. Each 
learning material or concept is determined by certain characteristics: a layer and a list of resources and 
resource values. Models of studied subject domain, learner, information and verification unit, learning 
material, plan of education and education have been defined. The plan of education can be conventional, 
statical, author’s and dynamic. Algorithms for course generation, dynamic plan generation and carrying out 
education are presented. The proposed model for planning of education based on resources and layers has 
been included in the system PeU. 
Keywords: planning education, e-learning. 

Introduction 

The e-learning action plan has been created by the Commission of the European Communities in 2001. The 
development of this plan shows the actuality of the present work. A lot of attempts for creation the e-learning 
standards with necessary requirement (SCORM, CMI, LOM, IMS, ARIADNE) and systems for creation of e-
learning environments (Learning Space, WebCT, Top Class, First Class, Blackboard, Virtual-U, Web course in 
a Box, CourseInfo, Learning Landscapes, CoSE, CoMentor, ARIADNE, Asymetrix Librarian, Norton Connect, 
Allaire Forum, Team Wave, WebBoard, Asymetrix ToolBook, etc.) [Britain]  have been done. In order to 
satisfy the requirements of the e-learning environments, the model of planning of education have to be done. 
The known models for planning of education are classical [Koffman, 1975; Пасхин, 1985; Савельев, 1986; 
Зайцева, 1989; Grandbastien, 1994; Grant, 1997] and resource [Milani, 2000; Milani, 2001a; Milani, 2001b] 
respectively based on the classical and recourse models of problem planning. 
The classical model for planning [Chien] is based on the initial and the final state of the problem and the 
operators for transformation of one state into another. The Chien model can not represent multiple used 
educational environment, where learners are interested in optimizing the path for passing over learning 
materials, not only from the point of view of the length of the path, but also depending on the time for passing 
over, price, level of difficulty, etc. 


