50 research outputs found

    HIV-associated plasmablastic lymphoma diagnosed by fine-needle aspiration cytology

    Get PDF

    requirements for naive CD4+ T cell stimulation

    Get PDF
    Human primary dendritic cells (DCs) are heterogeneous by phenotype, function, and tissue localization and distinct from inflammatory monocyte-derived DCs. Current information regarding the susceptibility and functional role of primary human DC subsets to Mycobacterium tuberculosis (Mtb) infection is limited. Here, we dissect the response of different primary DC subsets to Mtb infection. Myeloid CD11c+ cells and pDCs (C-type lectin 4C+ cells) were located in human lymph nodes (LNs) of tuberculosis (TB) patients by histochemistry. Rare CD141hi DCs (C-type lectin 9A+ cells) were also identified. Infection with live Mtb revealed a higher responsiveness of myeloid CD1c+ DCs compared to CD141hi DCs and pDCs. CD1c+ DCs produced interleukin (IL)-6, tumor necrosis factor α, and IL-1β but not IL-12p70, a cytokine important for Th1 activation and host defenses against Mtb. Yet, CD1c+ DCs were able to activate autologous naïve CD4+ T cells. By combining cell purification with fluorescence-activated cell sorting and gene expression profiling on rare cell populations, we detected in responding CD4+ T cells, genes related to effector-cytolytic functions and transcription factors associated with Th1, Th17, and Treg polarization, suggesting multifunctional properties in our experimental conditions. Finally, immunohistologic analyses revealed contact between CD11c+ cells and pDCs in LNs of TB patients and in vitro data suggest that cooperation between Mtb-infected CD1c+ DCs and pDCs favors stimulation of CD4+ T cells

    Prediction of In Vivo Laser-Induced Thermal Damage with Hyperspectral Imaging Using Deep Learning.

    Get PDF
    Thermal ablation is an acceptable alternative treatment for primary liver cancer, of which laser ablation (LA) is one of the least invasive approaches, especially for tumors in high-risk locations. Precise control of the LA effect is required to safely destroy the tumor. Although temperature imaging techniques provide an indirect measurement of the thermal damage, a degree of uncertainty remains about the treatment effect. Optical techniques are currently emerging as tools to directly assess tissue thermal damage. Among them, hyperspectral imaging (HSI) has shown promising results in image-guided surgery and in the thermal ablation field. The highly informative data provided by HSI, associated with deep learning, enable the implementation of non-invasive prediction models to be used intraoperatively. Here we show a novel paradigm "peak temperature prediction model" (PTPM), convolutional neural network (CNN)-based, trained with HSI and infrared imaging to predict LA-induced damage in the liver. The PTPM demonstrated an optimal agreement with tissue damage classification providing a consistent threshold (50.6 ± 1.5 °C) for the damage margins with high accuracy (~0.90). The high correlation with the histology score (r = 0.9085) and the comparison with the measured peak temperature confirmed that PTPM preserves temperature information accordingly with the histopathological assessment

    A Novel Technique to Improve Anastomotic Perfusion Prior to Esophageal Surgery: Hybrid Ischemic Preconditioning of the Stomach. Preclinical Efficacy Proof in a Porcine Survival Model

    Get PDF
    Esophagectomy often presents anastomotic leaks (AL), due to tenuous perfusion of gastric conduit fundus (GCF). Hybrid (endovascular/surgical) ischemic gastric preconditioning (IGP), might improve GCF perfusion. Sixteen pigs undergoing IGP were randomized: (1) Max-IGP (n = 6): embolization of left gastric artery (LGA), right gastric artery (RGA), left gastroepiploic artery (LGEA), and laparoscopic division (LapD) of short gastric arteries (SGA); (2) Min-IGP (n = 5): LGA-embolization, SGA-LapD; (3) Sham (n = 5): angiography, laparoscopy. At day 21 gastric tubulation occurred and GCF perfusion was assessed as: (A) Serosal-tissue-oxygenation (StO2) by hyperspectral-imaging; (B) Serosal time-to-peak (TTP) by fluorescence-imaging; (C) Mucosal functional-capillary-density-area (FCD-A) index by confocal-laser-endomicroscopy. Local capillary lactates (LCL) were sampled. Neovascularization was assessed (histology/immunohistochemistry). Sham presented lower StO2 and FCD-A index (41 ± 10.6%; 0.03 ± 0.03 respectively) than min-IGP (66.2 ± 10.2%, p-value = 0.004; 0.22 ± 0.02, p-value < 0.0001 respectively) and max-IGP (63.8 ± 9.4%, p-value = 0.006; 0.2 ± 0.02, p-value < 0.0001 respectively). Sham had higher LCL (9.6 ± 4.8 mL/mol) than min-IGP (4 ± 3.1, p-value = 0.04) and max-IGP (3.4 ± 1.5, p-value = 0.02). For StO2, FCD-A, LCL, max- and min-IGP did not differ. Sham had higher TTP (24.4 ± 4.9 s) than max-IGP (10 ± 1.5 s, p-value = 0.0008) and min-IGP (14 ± 1.7 s, non-significant). Max- and min-IGP did not differ. Neovascularization was confirmed in both IGP groups. Hybrid IGP improves GCF perfusion, potentially reducing post-esophagectomy AL

    Intraoperative Perfusion Assessment in Enhanced Reality Using Quantitative Optical Imaging: An Experimental Study in a Pancreatic Partial Ischemia Model

    Get PDF
    To reduce the risk of pancreatic fistula after pancreatectomy, a satisfactory blood flow at the pancreatic stump is considered crucial. Our group has developed and validated a real-time computational imaging analysis of tissue perfusion, using fluorescence imaging, the fluorescence-based enhanced reality (FLER). Hyperspectral imaging (HSI) is another emerging technology, which provides tissue-specific spectral signatures, allowing for perfusion quantification. Both imaging modalities were employed to estimate perfusion in a porcine model of partial pancreatic ischemia. Perfusion quantification was assessed using the metrics of both imaging modalities (slope of the time to reach maximum fluorescence intensity and tissue oxygen saturation (StO2), for FLER and HSI, respectively). We found that the HSI-StO2 and the FLER slope were statistically correlated using the Spearman analysis (R = 0.697; p = 0.013). Local capillary lactate values were statistically correlated to the HSI-StO2 and to the FLER slope (R = −0.88; p < 0.001 and R = −0.608; p = 0.0074). HSI-based and FLER-based lactate prediction models had statistically similar predictive abilities (p = 0.112). Both modalities are promising to assess real-time pancreatic perfusion. Clinical translation in human pancreatic surgery is currently underway

    Molecular and histological traits of reduced lysosomal acid lipase activity in the fatty liver

    Get PDF
    Recent studies demonstrated reduced blood lysosomal acid lipase (LAL) activity in patients with nonalcoholic fatty liver disease (NAFLD). We aimed to verify hepatic LAL protein content and activity in in vitro and in vivo models of fat overload and in NAFLD patients. LAL protein content and activity were firstly evaluated in Huh7 cells exposed to high-glucose/high-lipid (HGHL) medium and in the liver of C57BL/6 mice fed with high-fat diet (HFD) for 4 and 8 months. LAL protein was also evaluated by immunohistochemistry in liver biopsies from 87 NAFLD patients and 10 controls, and correlated with hepatic histology. Huh7 cells treated with HGHL medium showed a significant reduction of LAL activity, which was consistent with reduced LAL protein levels by western blotting using an antibody towards the N-term of the enzyme. Conversely, antibodies towards the C-term of the enzyme evidenced LAL accumulation, suggesting a post-translational modification that masks the LAL N-term epitope and affects enzymatic activity. Indeed, we found a high rate of ubiquitination and extra-lysosomal localization of LAL protein in cells treated with HGHL medium. Consistent with these findings, inhibition of proteasome triggered dysfunctional LAL accumulation and affected LAL activity. Accumulation of ubiquitinated/dysfunctional LAL was also found in the liver of HFD fed mice. In NAFLD patients, hepatic levels of non-ubiquitinated/functional LAL were lower than in controls and inversely correlated with disease activity and some of the hallmarks of reduced LAL. Fat overload leads to LAL ubiquitination and impairs its function, possibly reducing hepatic fat disposal and promoting NAFLD activity

    Mucosal Schwann cell “Hamartoma”: A new entity?

    No full text
    Schwannoma is a well-described, benign nerve sheath tumor of the soft tissue, but is rare in the gastrointestinal tract. Gastrointestinal schwannomas are often incidentally discovered as small polypoid intraluminal lesions. In this report, we describe the clinicopathologic and immunohistochemical features of a distinctive neural mucosal polyp composed of a diffuse cellular proliferation of uniform bland spindled cells in the lamina propria that entraps the colonic crypts. Immunohistochemical analysis revealed strong and diffuse positivity for the S-100 protein. To avoid confusion of these solitary colorectal polyps containing pure spindled Schwann cell proliferation in the lamina propria with neural lesions that have significant association with inherited syndromes, it is better to use the designation “mucosal Schwann hamartoma”

    Postmortem diagnosis of sepsis: a preliminary immunohistochemical study with an anti-procalcitonin antibody

    No full text
    Post mortem diagnosis of sepsis, especially in the forensic field, is a problem that presents several difficulties. The pathological findings in sepsis are often nonspecific, as they are often compatible with other different clinical pictures. The sensitivity of procalcitonin for the diagnosis of sepsis is estimated approximately in 77% while its specificity is about 79 %. Those characteristics suggested us that procalcitonin could be a possible immunohistochemical marker in the pathological diagnosis of sepsis. We selected 10 cases by the presence of clinical data that could sustain and underlie a certain diagnosis of sepsis. The positive control has been a thyroid gland without pathological alterations. The negative control has been on 5 subjects dead from non-infective causes. In all the samples we found the reaction with the anti-procalcitonin antibody to be positive in blood vessels. In every case we analyzed a definite positivity inside the cytoplasm of the myocardial cells, in brain cells (astrocytes and microglial), in the myelomonocyte line and inside the pneumocytes. In addition inside the cardiomyocytes it has also highlighted a nuclear positivity. In the liver tissue we found a clear positivity in hepatocytes, in the ductal epithelium and in the portal-biliary space. In the kidney tissue samples we found the antibody in glomeruli and in renal tubules. In conclusion we believe that immunohistochemical study with an anti - antibody procalcitonin can be a valuable aid for the postmortem diagnosis of sepsis. The small number of cases that we studied represent a limitation for our research

    Single Snapshot Imaging of Optical Properties (SSOP) for Perfusion Assessment during Gastric Conduit Creation for Esophagectomy: An Experimental Study on Pigs.

    Get PDF
    Anastomotic leakage (AL) is a serious complication occurring after esophagectomy. The current knowledge suggests that inadequate intraoperative perfusion in the anastomotic site contributes to an increase in the AL rate. Presently, clinical estimation undertaken by surgeons is not accurate and new technology is necessary to improve the intraoperative assessment of tissue oxygenation. In the present study, we demonstrate the application of a novel optical technology, namely Single Snapshot imaging of Optical Properties (SSOP), used to quantify StO2% in an open surgery experimental gastric conduit (GC) model. After the creation of a gastric conduit, local StO2% was measured with a preclinical SSOP system for 60 min in the antrum (ROI-A), corpus (ROI-C), and fundus (ROI-F). The removed region (ROI-R) acted as ischemic control. ROI-R had statistically significant lower StO2% when compared to all other ROIs at T15, T30, T45, and T60 (p < 0.0001). Local capillary lactates (LCLs) and StO2% correlation was statistically significant (R = -0.8439, 95% CI -0.9367 to -0.6407, p < 0.0001). Finally, SSOP could discriminate resected from perfused regions and ROI-A from ROI-F (the future anastomotic site). In conclusion, SSOP could well be a suitable technology to assess intraoperative perfusion of GC, providing consistent StO2% quantification and ROIs discrimination

    Case report: human papilloma virus type 120-related papillomatosis mimicking laryngeal carcinoma

    No full text
    INTRODUCTION: The relationship between human papilloma virus (HPV) and upper respiratory tract pathology was better understood in recent years and represents now an issue of particular interest in carcinogenesis and in immunocompromised host. We describe a case in which a rare genotype HPV-related papillomatosis mimics laryngeal carcinoma in an immunocompromised host. METHODS: A 54-year-old woman with a history of HIV-HCV coinfection and anal and laryngeal cancer successfully treated some years before was hospitalized for severe dyspnea, cough and dysphagia. Fiberoptic endoscopic evaluation raised the suspicion of tumor relapse showing the presence of a large glottic-supraglottic ulcerated mass. Several laryngeal biopsies demonstrated koilocytosis and p16 expression, according to a possible HPV infection, and focal figures of mild dysplasia of epithelium. 18 F-FDG PET/CT did not show high glycolytic activity at laryngeal level. An invasive upper respiratory tract papillomatosis in an immunocompromised host was suspected because of the patient's clinical improvement after antiretroviral therapy. CONCLUSION: Pharyngeal swab and oral rinse harboured the same HPV120 genotype sequence, a betapapillomavirus of recent description and not yet related to any similar clinical presentations
    corecore