150 research outputs found

    Interleukin 7 from Maternal Milk Crosses the Intestinal Barrier and Modulates T- Cell Development in Offspring

    Get PDF
    Background Breastfeeding protects against illnesses and death in hazardous environments, an effect partly mediated by improved immune function. One hypothesis suggests that factors within milk supplement the inadequate immune response of the offspring, but this has not been able to account for a series of observations showing that factors within maternally derived milk may supplement the development of the immune system through a direct effect on the primary lymphoid organs. In a previous human study we reported evidence suggesting a link between IL-7 in breast milk and the thymic output of infants. Here we report evidence in mice of direct action of maternally-derived IL-7 on T cell development in the offspring. Methods and Findings  We have used recombinant IL-7 labelled with a fluorescent dye to trace the movement in live mice of IL-7 from the stomach across the gut and into the lymphoid tissues. To validate the functional ability of maternally derived IL- 7 we cross fostered IL-7 knock-out mice onto normal wild type mothers. Subsets of thymocytes and populations of peripheral T cells were significantly higher than those found in knock-out mice receiving milk from IL-7 knock-out mothers. Conclusions/Significance Our study provides direct evidence that interleukin 7, a factor which is critical in the development of T lymphocytes, when maternally derived can transfer across the intestine of the offspring, increase T cell production in the thymus and support the survival of T cells in the peripheral secondary lymphoid tissue

    Rubia cordifolia, Fagonia cretica linn and Tinospora cordifolia exert neuroprotection by modulating the antioxidant system in rat hippocampal slices subjected to oxygen glucose deprivation

    Get PDF
    BACKGROUND: The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis and ultimately cell death. Rubia cordifolia (RC), Fagonia cretica linn (FC) and Tinospora cordifolia (TC) have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. However, their mechanism of action was largely unknown. We therefore selected these herbs for the present study to test their neuroprotective ability and the associated mechanism in rat hippocampal slices subjected to oxygen-glucose deprivation (OGD). METHODS: Hippocampal Slices were subjected to OGD (oxygen glucose deprivation) and divided into 3 groups: control, OGD and OGD + drug treated. Cytosolic Cu-Zn superoxide dismutase (Cu-Zn SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), nitric oxide (NO) was measured as nitrite (NO(2)) in the supernatant and protein assays were performed in the respective groups at various time intervals. EPR was used to establish the antioxidant effect of RC, FC and TC with respect to superoxide anion (O(2)(.-)), hydroxyl radicals ((. )OH), nitric oxide (NO) radical and peroxynitrite anion (ONOO) generated from pyrogallol, menadione, DETA-NO and Sin-1 respectively. RT-PCR was performed for the three groups for GCLC, iNOS, Cu-Zn SOD and GAPDH gene expression. RESULTS: All the three herbs were effective in elevating the GSH levels, expression of the gamma-glutamylcysteine ligase and Cu-Zn SOD genes. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as studied by electron paramagnetic resonance spectroscopy. In addition all the three herbs significantly diminished the expression of iNOS gene after 48 hours which plays a major role in neuronal injury during hypoxia/ischemia. CONCLUSIONS: RC, FC and TC therefore attenuate oxidative stress mediated cell injury during OGD and exert the above effects at both the cytosolic as well as at gene expression level and may be an effective therapeutic tool against ischemic brain damage

    Rapid improvement in verbal fluency and aphasia following perispinal etanercept in Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent clinical studies point to rapid and sustained clinical, cognitive, and behavioral improvement in both Alzheimer's disease and primary progressive aphasia following weekly perispinal administration of etanercept, a TNF-alpha inhibitor that acts by blocking the binding of this cytokine to its receptors. This outcome is concordant with recent basic science studies suggesting that TNF-alpha functions <it>in vivo </it>as a gliotransmitter that regulates synaptic function in the brain. We hypothesized that perispinal etanercept had the potential to improve verbal function in Alzheimer's disease, so we included several standarized measures of verbal ability to evaluate language skills in a clinical trial of perispinal etanercept for Alzheimer's disease.</p> <p>Methods</p> <p>This was a prospective, single-center, open-label, pilot study, in which 12 patients with mild-to-severe Alzheimer's disease were administered etanercept, 25–50 mg, weekly by perispinal administration for six months. Two additional case studies are presented.</p> <p>Results</p> <p>Two-tailed, paired t-tests were conducted comparing baseline performance to 6-month performance on all neuropsychological measures. Test batteries included the California Verbal Learning Test-Second Edition, Adult Version; Logical Memory I and II(WMS-LM-II) from the Wechsler Memory Scale-Abbreviated; the Comprehensive Trail Making Test (TMT); Boston Naming Test; and letter(FAS) and category verbal fluency. All measures revealed a significant effect except for the Boston Naming Test and the TMT-4, with WMS-LM-II being marginally significant at p = .05. The FAS test for letter fluency was most highly significant with a p < 0.0007. In addition, rapid improvement in verbal fluency and aphasia in two patients with dementia, beginning minutes after perispinal etanercept administration, is documented.</p> <p>Conclusion</p> <p>In combination with the previously reported results of perispinal etanercept in Alzheimer's disease and primary progressive aphasia, these results further argue that larger scale studies of this therapeutic intervention, including Phase 3 trials, are warranted in dementias. In addition, these results may provide insight into the basic pathophysiologic mechanisms underlying Alzheimer's disease and related forms of dementia, and suggest the existence of novel, rapidly reversible, TNF-mediated pathophysiologic mechanisms in Alzheimer's disease which are worthy of further investigation.</p

    Glutathione and glutamate in schizophrenia: a 7T MRS study

    Get PDF
    In schizophrenia, abnormal neural metabolite concentrations may arise from cortical damage following neuroinflammatory processes implicated in acute episodes. Inflammation is associated with increased glutamate, whereas the antioxidant glutathione may protect against inflammation-induced oxidative stress. We hypothesized that patients with stable schizophrenia would exhibit a reduction in glutathione, glutamate and/or glutamine in the cerebral cortex, consistent with a postinflammatory response, and that this reduction would be most marked in patients with residual schizophrenia an early stage with positive psychotic symptoms has progressed to a late stage characterised by long-term negative symptoms and impairments. We recruited 28 patients with stable schizophrenia and 45 healthy participants matched for age, gender and parental socio-economic status. We measured glutathione, glutamate and glutamine concentrations in the anterior cingulate cortex (ACC), left insula, and visual cortex using 7T proton Magnetic Resonance Spectroscopy (MRS). Glutathione and glutamate were significantly correlated in all three voxels. Glutamine concentrations across the three voxels were significantly correlated with each other. Principal Components Analysis (PCA) produced three clear components: an ACC glutathione-glutamate component; an insula-visual glutathione-glutamate component; and a glutamine component. Patients with stable schizophrenia had significantly lower scores on the ACC glutathione-glutamate component, an effect almost entirely leveraged by the sub-group of patients with residual schizophrenia. All three metabolite concentration values in the ACC were significantly reduced in this group. These findings are consistent with the hypothesis that excito-toxicity during the acute phase of illness leads to reduced glutathione and glutamate in the residual phase of the illness

    Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance.

    Get PDF
    Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies

    Useful pharmacodynamic endpoints in children: selection, measurement, and next steps.

    Get PDF
    Pharmacodynamic (PD) endpoints are essential for establishing the benefit-to-risk ratio for therapeutic interventions in children and neonates. This article discusses the selection of an appropriate measure of response, the PD endpoint, which is a critical methodological step in designing pediatric efficacy and safety studies. We provide an overview of existing guidance on the choice of PD endpoints in pediatric clinical research. We identified several considerations relevant to the selection and measurement of PD endpoints in pediatric clinical trials, including the use of biomarkers, modeling, compliance, scoring systems, and validated measurement tools. To be useful, PD endpoints in children need to be clinically relevant, responsive to both treatment and/or disease progression, reproducible, and reliable. In most pediatric disease areas, this requires significant validation efforts. We propose a minimal set of criteria for useful PD endpoint selection and measurement. We conclude that, given the current heterogeneity of pediatric PD endpoint definitions and measurements, both across and within defined disease areas, there is an acute need for internationally agreed, validated, and condition-specific pediatric PD endpoints that consider the needs of all stakeholders, including healthcare providers, policy makers, patients, and families.Pediatric Research advance online publication, 11 April 2018; doi:10.1038/pr.2018.38

    Impact of Dendritic Size and Dendritic Topology on Burst Firing in Pyramidal Cells

    Get PDF
    Neurons display a wide range of intrinsic firing patterns. A particularly relevant pattern for neuronal signaling and synaptic plasticity is burst firing, the generation of clusters of action potentials with short interspike intervals. Besides ion-channel composition, dendritic morphology appears to be an important factor modulating firing pattern. However, the underlying mechanisms are poorly understood, and the impact of morphology on burst firing remains insufficiently known. Dendritic morphology is not fixed but can undergo significant changes in many pathological conditions. Using computational models of neocortical pyramidal cells, we here show that not only the total length of the apical dendrite but also the topological structure of its branching pattern markedly influences inter- and intraburst spike intervals and even determines whether or not a cell exhibits burst firing. We found that there is only a range of dendritic sizes that supports burst firing, and that this range is modulated by dendritic topology. Either reducing or enlarging the dendritic tree, or merely modifying its topological structure without changing total dendritic length, can transform a cell's firing pattern from bursting to tonic firing. Interestingly, the results are largely independent of whether the cells are stimulated by current injection at the soma or by synapses distributed over the dendritic tree. By means of a novel measure called mean electrotonic path length, we show that the influence of dendritic morphology on burst firing is attributable to the effect both dendritic size and dendritic topology have, not on somatic input conductance, but on the average spatial extent of the dendritic tree and the spatiotemporal dynamics of the dendritic membrane potential. Our results suggest that alterations in size or topology of pyramidal cell morphology, such as observed in Alzheimer's disease, mental retardation, epilepsy, and chronic stress, could change neuronal burst firing and thus ultimately affect information processing and cognition

    Contrasting Transcriptional Responses of a Virulent and an Attenuated Strain of Mycobacterium tuberculosis Infecting Macrophages

    Get PDF
    Along with the recent identification of single nucleotide polymorphisms in H37Ra when compared to H37Rv, our demonstration of differential expression of PhoP-regulated and ESX-1 region-related genes during macrophage infection further highlights the significance of these genes in the attenuation of H37Ra

    Relevance of laboratory testing for the diagnosis of primary immunodeficiencies: a review of case-based examples of selected immunodeficiencies

    Get PDF
    The field of primary immunodeficiencies (PIDs) is one of several in the area of clinical immunology that has not been static, but rather has shown exponential growth due to enhanced physician, scientist and patient education and awareness, leading to identification of new diseases, new molecular diagnoses of existing clinical phenotypes, broadening of the spectrum of clinical and phenotypic presentations associated with a single or related gene defects, increased bioinformatics resources, and utilization of advanced diagnostic technology and methodology for disease diagnosis and management resulting in improved outcomes and survival. There are currently over 200 PIDs with at least 170 associated genetic defects identified, with several of these being reported in recent years. The enormous clinical and immunological heterogeneity in the PIDs makes diagnosis challenging, but there is no doubt that early and accurate diagnosis facilitates prompt intervention leading to decreased morbidity and mortality. Diagnosis of PIDs often requires correlation of data obtained from clinical and radiological findings with laboratory immunological analyses and genetic testing. The field of laboratory diagnostic immunology is also rapidly burgeoning, both in terms of novel technologies and applications, and knowledge of human immunology. Over the years, the classification of PIDs has been primarily based on the immunological defect(s) ("immunophenotype") with the relatively recent addition of genotype, though there are clinical classifications as well. There can be substantial overlap in terms of the broad immunophenotype and clinical features between PIDs, and therefore, it is relevant to refine, at a cellular and molecular level, unique immunological defects that allow for a specific and accurate diagnosis. The diagnostic testing armamentarium for PID includes flow cytometry - phenotyping and functional, cellular and molecular assays, protein analysis, and mutation identification by gene sequencing. The complexity and diversity of the laboratory diagnosis of PIDs necessitates many of the above-mentioned tests being performed in highly specialized reference laboratories. Despite these restrictions, there remains an urgent need for improved standardization and optimization of phenotypic and functional flow cytometry and protein-specific assays. A key component in the interpretation of immunological assays is the comparison of patient data to that obtained in a statistically-robust manner from age and gender-matched healthy donors. This review highlights a few of the laboratory assays available for the diagnostic work-up of broad categories of PIDs, based on immunophenotyping, followed by examples of disease-specific testing
    • …
    corecore