31 research outputs found

    Middleware for the Internet of Things, Design Goals and Challenges

    Get PDF
    As the number of wireless devices increases and their size becomes smaller, there can be more interaction between everyday objects of our life. With advances in RFID chips and the introduction of new generations of these devices that are smaller and cheaper, it is possible to put a wireless interface on almost all everyday objects: vehicles, clothes, foodstuffs, etc. This concept is called the \textit{Internet of Things}. Interaction with thousands of wireless devices leads to a continuous and massive flow of events which are generated spontaneously. The question of how to deal with this enormous number of events is challenging and introduces new design goals for a communication mechanism. In this paper we argue that a middleware together with suitable linguistic abstractions is a proper solution. We also point out the challenges in developing this middleware. Moreover, we give an overview of recent related work and describe why they fail to address these challenges

    Calculational Verification of Reactive Programs with Reactive Relations and Kleene Algebra

    Get PDF
    Reactive programs are ubiquitous in modern applications, and so verification is highly desirable. We present a verification strategy for reactive programs with a large or infinite state space utilising algebraic laws for reactive relations. We define novel operators to characterise interactions and state updates, and an associated equational theory. With this we can calculate a reactive program’s denotational semantics, and thereby facilitate automated proof. Of note is our reasoning support for iterative programs with reactive invariants, which is supported by Kleene algebra. We illustrate our strategy by verifying a reactive buffer. Our laws and strategy are mechanised in Isabelle/UTP, which provides soundness guarantees, and practical verification support

    Design Considerations for a Distributed Low-Cost Air Quality Sensing System for Urban Environments in Low-Resource Settings

    No full text
    With rapid urbanization, hazardous environmental exposures such as air, noise, plastic, soil and water pollution have emerged as a major threat to urban health. Recent studies show that 9 out of 10 people worldwide breathe contaminated air contributing to over 7 million premature deaths annually. Internet of Things (IoT) and Artificial Intelligence (AI)-based environmental sensing and modelling systems have potential for contributing low-cost and effective solutions by providing timely data and insights to inform mitigation and management actions. While low and middleincome countries are among those most affected by environmental health risks, the appropriateness and deployment of IoT and AI systems in low-resource settings is least understood. Motivated by this knowledge gap, this paper presents a design space for a custom environmental sensing and management system designed and developed to fill the data gaps in low-resource urban settings with a particular focus on African cities. The paper presents the AirQo system, which is the first instance of the design space requirements. The AirQo system includes: (1) autonomous AirQo sensors designed and customised to be deployed in resource constrained environments (2) a distributed sensor network that includes over 120 static and mobile nodes for air quality sensing (3) AirQo network manager tool for tracking and management of installation and maintenance of nodes, (4) AirQo platform that provides calibration, data access and analytics tools to support usage among policy makers and citizens. Case studies from African cities that are using the data and insights for education, awareness and policy are presented. The paper provides a template for designing and deploying a technology-driven solution for cities in low resource settings

    Emerging Software Engineering Research Networks in (East) Africa

    No full text

    Determination of Satellite-Derived PM<sub>2.5</sub> for Kampala District, Uganda

    No full text
    Ground monitoring stations are widely used to monitor particulate matter (PM2.5). However, they are expensive to maintain and provide information localized to the stations, and hence are limited for large-scale use. Analysis of in situ PM2.5 shows that it varies spatially and temporally with distinct seasonal differences. This study, therefore, explored the use of satellite images (Sentinel-2 and Landsat-8) for determining the spatial and temporal variations in PM2.5 for Kampala District in Uganda. Firstly, satellite-derived aerosol optical depth (AOD) was computed using the Code for High Resolution Satellite mapping of optical Thickness and aNgstrom Exponent algorithm (CHRISTINE code). The derived AOD was then characterised with reference to meteorological factors and then correlated with in situ PM2.5 to determine satellite-derived PM2.5 using geographically weighted regression. In the results, correlating in situ PM2.5 and AOD revealed that the relationship is highly variable over time and thus needs to be modelled for each satellite’s overpass time, rather than having a generic model fitting, say, a season. The satellite-derived PM2.5 showed good model performance with coefficient of correlation (R2) values from 0.69 to 0.89. Furthermore, Sentinel-2 data produced better predictions, signifying that increasing the spatial resolution can improve satellite-derived PM2.5 estimations

    Exploring PM2.5 variations from calibrated low-cost sensor network in Greater Kampala, during COVID-19 imposed lockdown restrictions: Lessons for Policy

    No full text
    Air pollution is considered a major public health risk globally, and the global South including sub-Saharan Africa face particular health risks, but there is limited data to quantify the level of pollution for different air quality contexts. The COVID-19 lockdown measures led to reduced human activities, and provided a unique opportunity to explore the impacts of reduced activities on urban air quality. This paper utilises calibrated data from a low-cost sensor network to explore insights from the diverse ambient air quality profile for four urban locations in Greater Kampala, Uganda before and during lockdown from March 31 to May 5 2020, highlighting the uniqueness of air pollution profiles in a sub-Saran Africa context. All locations saw year to year improvements in 24-hour mean PM2.5 between 9 μg/m3 and 25 μg/m3 (i.e. 17-50% reduction from the previous year) and correlated well with reduction in traffic (up to approx. 80%) and commercial activities. The greatest improvement was observed in locations close to major transport routes in densely populated residential areas between 8 pm and 5 am. This suggests that the reduction in localised pollution sources such as nocturnal polluting activities including traffic and outdoor combustion including street cooking characteristic of fast-growing cities in developing countries, coupled with meteorological effects led to amplified reductions that continued well into the night, although meteorological effects are more generalised. Blanket policy initiatives targeting peak pollution hours could be adopted across all locations, while transport sector regulation could be very effective for pollution management. Likewise, because of the clustered and diffuse nature of pollution, community driven initiatives could be feasible for long-term mitigation
    corecore