
This is a repository copy of Calculational Verification of Reactive Programs with Reactive
Relations and Kleene Algebra.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/134042/

Version: Accepted Version

Proceedings Paper:
Foster, Simon David orcid.org/0000-0002-9889-9514, Ye, Kangfeng, Cavalcanti, Ana Lucia
Caneca orcid.org/0000-0002-0831-1976 et al. (1 more author) (2018) Calculational
Verification of Reactive Programs with Reactive Relations and Kleene Algebra. In:
Guttmann, Walter, Desharnais, Jules and Joosten, Stef, (eds.) Relational and Algebraic
Methods in Computer Science - 17th International Conference, RAMiCS 2018,
Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) . Lecture Notes in Computer
Science , pp. 205-224.

https://doi.org/10.1007/978-3-030-02149-8_13

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Calculational Verification of Reactive Programs

with Reactive Relations and Kleene Algebra

Simon FosterORCiD, Kangfeng Ye, Ana Cavalcanti, and Jim Woodcock

University of York
simon.foster@york.ac.uk

Abstract. Reactive programs are ubiquitous in modern applications,
and so verification is highly desirable. We present a verification strat-
egy for reactive programs with a large or infinite state space utilising
algebraic laws for reactive relations. We define novel operators to char-
acterise interactions and state updates, and an associated equational
theory. With this we can calculate a reactive program’s denotational
semantics, and thereby facilitate automated proof. Of note is our rea-
soning support for iterative programs with reactive invariants, which is
supported by Kleene algebra. We illustrate our strategy by verifying a
reactive buffer. Our laws and strategy are mechanised in Isabelle/UTP,
which provides soundness guarantees, and practical verification support.

1 Introduction

Reactive programming [1, 2] is a paradigm that enables effective description
of software systems that exhibit both internal sequential behaviour and event-
driven interaction with a concurrent party. Reactive programs are ubiquitous in
safety-critical systems, and typically have a very large or infinite state space.
Though model checking is an invaluable verification technique, it exhibits in-
herent limitations with state explosion and infinite-state systems that can be
overcome by supplementing it with theorem proving.

Previously [3], we have shown how reactive contracts support automated
proof. They follow the design-by-contract paradigm [4], where programs are
accompanied by pre- and postconditions. Reactive programs are often non-
terminating and so we also capture intermediate behaviours, where the program
has not terminated, but is quiescent and offers opportunities to interact. Our
contracts are triples, [P1 −| P2 |P3], where P1 is the precondition, P3 the postcon-
dition, and P2 the “pericondition”. P2 characterises the quiescent observations
in terms of the interaction history, and the events enabled at that point.

Reactive contracts describe communication and state updates, so P1, P2, and
P3 can refer to both a trace history of events and internal program variables.
They are, therefore, called “reactive relations”: like relations that model sequen-
tial programs, they can refer to variables before (x) and later (x ′) in execution,
but also the interaction trace (tt), in both intermediate and final observations.

Verification using contracts employs refinement (⊑), which requires that
an implementation weakens the precondition, and strengthens both the peri-

2 Simon Foster, Kangfeng Ye, Ana Cavalcanti, Jim Woodcock

and postcondition when the precondition holds. We employ the “programs-as-
predicates” approach [5], where the implementation (Q) is itself denoted as a
composition of contracts. Thus, a verification problem, [P1 −| P2 |P3] ⊑ Q , can be
solved by calculating a program [Q1 −| Q2 |Q3] = Q , and then discharging three
proof obligations: (1) Q1 ⊑ P1; (2) P2 ⊑ (Q2 ∧ P1); and (3) P3 ⊑ (Q3 ∧ P1).
These can be further decomposed, using relational calculus, to produce verifica-
tion conditions. In [3] we employ this strategy in an Isabelle/HOL tactic.

For reactive programs of a significant size, these relations are complex, and so
the resulting proof obligations are difficult to discharge using relational calculus.
We need, first, abstract patterns so that the relations can be simplified. This
necessitates bespoke operators that allow us to concisely formulate the differ-
ent kinds of observation. Second, we need calculational laws to handle iterative
programs, which are only partly handled in our previous work [3].

In this paper we present a novel calculus for description, composition, and
simplification of reactive relations in the stateful failures-divergences model [6,7].
We characterise conditions, external interactions, and state updates. An equa-
tional theory allows us to reduce pre-, peri-, and postconditions to compositions
of these atoms using operators of Kleene algebra [8] (KA) and utilise KA proof
techniques. Our theory is characterised in the Unifying Theories of Program-
ming [6,9] (UTP) framework. For that, we identify a class of UTP theories that
induce KAs, and utilise it in derivation of calculational laws for iteration. We use
our UTP mechanisation, called Isabelle/UTP [10], to implement an automated
verification approach for infinite-state systems with rich data structures.

The paper is structured as follows. §2 outlines preliminary material. §3 iden-
tifies a class of UTP theories that induce KAs, and applies this for calculation of
iterative contracts. §4 specialises reactive relations with new atomic operators to
capture stateful failures-divergences, and derives their equational theory. §5 ex-
tends this with support for calculating external choices. §6 completes the theoret-
ical picture with while loops and reactive invariants. §7 demonstrates the result-
ing proof strategy in a small verification. §8 outlines related work and concludes.
All our theorems have been mechanically verified in Isabelle/UTP1 [10–13].

2 Preliminaries

Kleene Algebras [8] (KA) characterise sequential and iterative behaviour in
nondeterministic programs using a signature (K ,+, 0, ·, 1, ∗), where + is a choice
operator with unit 0, and · a composition operator, with unit 1. Kleene closure
P∗ denotes iteration of P using · zero or more times. We consider the class of
weak Kleene algebras [14], which build on weak dioids.

Definition 2.1. A weak dioid is a structure (K ,+, 0, ·, 1) such that (S ,+, 0) is
an idempotent and commutative monoid; (S , ·, 1) is a monoid; · left- and right-
distributes over +; and 0 is a left annihilator for ·.

1 All proofs can be found in the cited series of Isabelle/HOL reports. For historical rea-
sons, we use the syntax Rs(P ⊢ Q ⋄R) in our mechanisation for a contract [P −| Q |R],
which builds on Hoare and He’s original syntax for the theory of designs [6].

Calculational Verification of Reactive Programs 3

The 0 operator represents miraculous behaviour. It is a left annihilator of com-
position, but not a right annihilator as this often does not hold for programs. K
is partially ordered by x ≤ y , (x + y = y), which is defined in terms of +, and
has least element 0. A weak KA extends this with the behaviour of the star.

Definition 2.2. A weak Kleene algebra is a structure (K,+, 0, ·, 1,∗) such that

1. (K ,+, 0, ·, 1) is a weak dioid
2. 1 + x · x∗ ≤ x∗

3. z + x · y ≤ y ⇒ x∗ · z ≤ y

4. z + y · x ≤ y ⇒ z · x∗ ≤ y

Various enrichments and specialisations of these axioms exist; for a complete
survey see [8]. For our purposes, these axioms alone suffice. From this base, a
number of useful identities can be derived, some of which are listed below.

Theorem 2.3. x∗∗ = x∗ x∗ = 1+x ·x∗ (x+y)∗ = (x∗ ·y∗)∗ x ·x∗ = x∗ ·x

UTP [6, 9] uses the “programs-as-predicate” approach to encode denotational
semantics and facilitate reasoning about programs. It uses the alphabetised re-
lational calculus, which combines predicate calculus operators like disjunction
(∨), complement (¬), and quantification (∃ x • P(x)), with relation algebra, to
denote programs as binary relations between initial variables (x) and their sub-
sequent values (x ′). The set of relations Rel is partially ordered by refinement ⊑
(refined-by), denoting universally closed reverse implication, where false refines
every relation. Relational composition (#) denotes sequential composition with
identity II . We summarise the algebraic properties of relations below.

Theorem 2.4. (Rel ,⊒, false, #, II) is a Boolean quantale [15], so that:

1. (Rel ,⊑) is a complete lattice, with infimum
∨

, supremum
∧

, greatest element
false, least element true, and weakest (least) fixed-point operator µF ;

2. (Rel ,∨, false,∧, true,¬) is a Boolean algebra;
3. (Rel , #, II) is a monoid with false as left and right annihilator;
4. # distributes over

∨
from the left and right.

We often use
d

i∈I
P(i) to denote an indexed disjunction over I , which intu-

itively refers to a nondeterministic choice. Note that the partial order ≤ of the
Boolean quantale is ⊒, and so our lattice operators are inverted: for example,

∨

is the infimum with respect to ⊑, and µF is the least fixed-point.
Relations can directly express sequential programs, whilst enrichment to

characterise more advanced paradigms — such as object orientation [16], real-
time [17], and concurrency [6] — can be achieved using UTP theories. A UTP
theory is characterised as the set of fixed-points of a function H : Rel → Rel,
called a healthiness condition. If P is a fixed-point of H it is said to be H-healthy,
and the set of healthy relations is JHK , {P | H(P) = P}. In UTP, it is desirable
that H is idempotent and monotonic so that JHK forms a complete lattice under
⊑, and thus reasoning about both nondeterminism and recursion is possible.

Theory engineering and verification of programs using UTP is supported by
Isabelle/UTP [10], which provides a shallow embedding of the relational calculus
on top of Isabelle/HOL, and various approaches to automated proof. In this
paper, we use a UTP theory to characterise reactive programs.

4 Simon Foster, Kangfeng Ye, Ana Cavalcanti, Jim Woodcock

Reactive Programs. Whilst sequential programs determine the relationship
between an initial and final state, reactive programs also pause during execution
to interact with the environment. For example, the CSP [9, 18] and Circus [7]
languages can model networks of concurrent processes that communicate using
shared channels. Reactive behaviour is described using primitives such as event
prefix a→P , which awaits event a and then enables P ; conditional guard, b & P ,
which enables P when b is true; external choice P ✷Q , where the environment
resolves the choice by communicating an initial event of P or Q ; and iteration
while b do P . Channels can carry data, and so events can take the form of an
input (c?x) or output (c!v). Circus processes also have local state variables that
can be assigned (x := v). We exemplify Circus with an unbounded buffer.

Example 2.5. In the Buffer process below, variable bf : seqN records the ele-
ments, and channels inp(n : N) and outp(n : N) represent inputs and outputs.

Buffer , bf := 〈〉 #




while true do(
inp?v → bf := bf a 〈v〉
✷ (#bf > 0) & out !(head(bf)) → bf := tail(bf)

)



Variable bf is set to the empty sequence 〈〉, and then a non-terminating loop
describes the main behaviour. Its body repeatedly allows the environment to
either provide a value v over inp, followed by which bf is extended, or else, if the
buffer is non-empty, receive the value at the head, and then bf is contracted. ⊓⊔

The semantics of such programs can be captured using reactive contracts [3]:

[P1(tt, st, r) −| P2(tt, st, r , r
′) | P3(tt, st, st

′, r , r ′)]

Here, P1···3 are reactive relations that respectively encode, (1) the precondition
in terms of the initial state and permissible traces; (2) permissible intermediate
interactions with respect to an initial state; and (3) final states following exe-
cution. Pericondition P2 and postcondition P3 are both within the “guarantee”
part of the underlying design contract, and so must be strengthened by refin-
ment; see Appendix A and [3] for details. P2 does not refer to intermediate state
variables since they are concealed when a program is quiescent.

Variable tt refers to the trace, and st, st ′ : Σ to the state, for state space
Σ. Traces are equipped with operators for the empty trace 〈〉, concatenation
tt1

a tt2, prefix tt1 ≤ tt2, and difference tt1− tt2, which removes a prefix tt2 from
tt1. Technically, tt is not a relational variable, but an expression tt , tr ′ − tr

where tr , tr ′, as usual in UTP, encode the trace relationally [6]. Nevertheless,
due to our previous results [10,19], tt can be treated as a variable. Here, traces
are modelled as finite sequences, tt : seqEvent, for some event set, though other
models are also admitted [19]. Events can be parametric, written a.x , where a is a
channel and x is the data. Moreover, the relations can encode additional semantic
data, such as refusals, using variables r , r ′. Our theory, therefore, provides an
extensible denotational semantic model for reactive and concurrent languages.

To exemplify, we consider the event prefix and assignment operators from
Circus, which require that we add variable ref ′ : P(Event) to record refusals.

a → Skip , [truer −| tt = 〈〉 ∧ a /∈ ref ′ | tt = 〈a〉 ∧ st
′ = st]

Calculational Verification of Reactive Programs 5

x := v , [truer −| false | st
′ = st ⊕ {x 7→ v} ∧ tt = 〈〉]

Prefix has a true precondition, indicated using the reactive relation truer , since
the environment cannot cause errors. In the pericondition, no events have oc-
curred (tt = 〈〉), but a is not being refused. In the postcondition, the trace is
extended by a, and the state is unchanged. Assignment also has a true pre-
condition, but a false pericondition since it terminates without interaction. The
postcondition updates the state, and leaves the trace unchanged.

Reactive relations and contracts are characterised by healthiness conditions
RR and NSRD, respectively, which we have previously described [3], and re-
produce in Appendix A. NSRD specialises the theory of reactive designs [7,
9] to normal stateful reactive designs [3]. Both JRRK and JNSRDK are closed
under sequential composition, and have units IIr and IIR , respectively. Both
also form complete lattices under ⊑, with top elements false and Miracle =
[truer −| false | false], respectively. Chaos = [false −| false | false], the least deter-
minisitic contract, is the bottom of the reactive contract lattice. We define the
conditional operator P2b3Q , ((b ∧ P) ∨ (¬b ∧ Q)), where b is a condition
on unprimed state variables, which can be used for both reactive relations and
contracts. We then define the state test operator [b]⊤

r
, IIr2b3false.

Contracts can be composed using relational calculus. The following identi-
ties [3, 12] show how this entails composition of the underlying pre-, peri-, and
postconditions for

d
and #, and also demonstrates closure under these operators.

Theorem 2.6 (Reactive Contract Composition).
d

i∈I
[P(i) −| Q(i) |R(i)] =

[∧
i∈I

P(i) −
∣∣ ∨

i∈I
Q(i)

∣∣ ∨
i∈I

R(i)
]

(1)

[P1 −| P2 |P3] # [Q1 −| Q2 |Q3] = [P1∧(P3 wpr Q1) −| P2∨(P3 #Q2) |P3 #Q3] (2)

Nondeterministic choice requires all preconditions, and asserts that one of the
peri- and postcondition pairs hold. For sequential composition, the precondition
assumes that P1 holds, and that P3 fulfils Q1. The latter is formulated using a
reactive weakest precondition (wpr), which obeys standard laws [20] such as:

(
∨

i∈I
P(i))wpr R =

∧
i∈I

P(i)wpr R (P #Q)wpr R = P wpr (Q wpr R)

In the pericondition, either the first contract is intermediate (P2), or else it
terminated (P3) and then following this the second is intermediate (Q2). In the
postcondition the contracts have both terminated in sequence (P3 # Q3).

With these and related theorems [10], we can calculate contracts of reactive
programs. Verification, then, can be performed by proving a refinement between
two reactive contracts, a strategy we have mechanised in the Isabelle/UTP tac-
tics rdes-refine and rdes-eq [10]. The question remains, though, how to reason
about the underlying compositions of reactive relations for the pre-, peri-, and
postconditions. For example, consider the action (a→Skip) # x :=v . For its post-
condition, we must simplify (tt = 〈a〉 ∧ st

′ = st) # (st ′ = st⊕{x 7→ v} ∧ tt = 〈〉).
In order to simplify its precondition, we also need to consider reactive weakest
preconditions. Without such simplifications, reactive relations can grow very
quickly and hamper proof. Finally, of particular importance is the handling of
iterative reactive relations. We address these issues in this paper.

6 Simon Foster, Kangfeng Ye, Ana Cavalcanti, Jim Woodcock

3 Linking UTP and Kleene Algebra

In this section, we characterise properties of a UTP theory sufficient to identify
a KA, and use this to obtain theorems for iterative contracts. We observe that
UTP relations form a KA (Rel ,⊓, #,∗ , II), where P∗ , (νX • II ⊓ P # X). We
have proved this definition equivalent to the power form: P∗ = (

d
i∈N

P i) where
Pn iterates sequential composition n times.

Typically, UTP theories, like JNSRDK, share the operators for choice (⊓) and
composition (#), only redefining them when absolutely necessary. Formally, given
a UTP theory defined by a healthiness condition H, the set of healthy relations
JHK is closed under ⊓ and #. This has the major advantage that a large body
of laws is directly applicable from the relational calculus. The ubiquity of ⊓, in
particular, can be characterised through the subset of continuous UTP theories,
where H distributes through arbitrary non-empty infima, that is,

H
(d

i∈I
P(i)

)
=

d
i∈I

H(P(i)) provided I 6= ∅.

Monotonicity of H follows from continuity, and so such theories induce a com-
plete lattice. Continuous UTP theories include designs [6,14], CSP, and Circus [7].
A further consequence of continuity is that the relational weakest fixed-point op-
erator µX • F (X) constructs healthy relations when F : Rel → JHK.

Though these theories share infima and weakest fixed-points, they do not, in
general, share ⊤ and ⊥ elements, which is why the infima are non-empty in the
above continuity property. Rather, we have a top element ⊤H , H(false) and a
bottom element ⊥H , H(true) [3]. The theories also do not share the relational
identity II , but typically define a bespoke identity IIH , which means that JHK
is not closed under the relational Kleene star. However, JHK is closed under the
related Kleene plus P+ , P # P∗ since it is equivalent to (

d
i∈N

P i+1), which
iterates P one or more times. Thus, we can obtain a theory Kleene star with the
definition P∗ , IIH ⊓ P+, under which H is indeed closed. We, therefore, define
the following criteria for a UTP theory.

Definition 3.1. A Kleene UTP theory (H, IIH) satisfies the following conditions:
(1) H is idempotent and continuous; (2) H is closed under sequential composi-
tion; (3) identity IIH is H-healthy; (4) IIH # P = P # IIH = P , when P is H-healthy;
(5) ⊤H # P = ⊤H, when P is H-healthy.

From these properties, we can prove the following theorem.

Theorem 3.2. If (H, IIH) is a Kleene UTP theory, then (JHK,⊓,⊤H, #, IIH,
∗) forms

a weak Kleene algebra.

Proof. We prove this in Isabelle/UTP by lifting of laws from the Isabelle/HOL
KA hierarchy [21,22]. For details see [11].

All the identities of Theorem 2.3 hold in a Kleene UTP theory, thus providing
reasoning capabilities for iterative programs. In particular, we can show that
(JNSRDK,⊓,Miracle, #, IIR ,

∗) and (JRRK,⊓, false, #, IIr ,∗) both form weak KAs.
Moreover, we can now also show how to calculate an iterative contract [12].

Calculational Verification of Reactive Programs 7

Theorem 3.3 (Reactive Contract Iteration).

[P −| Q | R]
∗

= [R∗ wpr P −| R∗ # Q | R∗]

Note that the outer and inner star are different operators. The precondition
states that R must not violate P after any number of iterations. The peri-
condition has R iterated followed by Q holding, since the final observation is
intermediate. The postcondition simply iterates R. Thus we have the basis for
calculating and reasoning about iterative contracts.

4 Reactive Relations of Stateful Failures-Divergences

Here, we specialise our contract theory to incorporate failure traces, which are
used in CSP, Circus, and related languages [23]. We define atomic operators to
describe the underlying reactive relations, and the associated equational theory
to expand and simplify compositions arising from Theorems 2.6 and 3.3, and
thus support automated reasoning. We consider external choice separately (§5).

Healthiness condition NCSP , NSRD ◦ CSP3 ◦ CSP4 characterises the
stateful failures-divergences model [6, 7, 9]. CSP3 and CSP4 ensure the refusal
sets are well-formed [6, 9]: ref ′ can only be mentioned in the pericondition (see
also Appendix A). NCSP, like NSRD, is continuous and has Skip, defined below,
as a left and right unit. Thus, (JNCSPK,⊓,Miracle, #,Skip,∗) forms a Kleene
algebra. An NCSP contract has the following specialised form [13].

[P(tt, st) −| Q(tt, st, ref ′) | R(tt, st, st ′)]

The underlying reactive relations capture a portion of the stateful failures-
divergences. P captures the initial states and traces that do not induce diver-
gence, that is, unpredictable behaviour like Chaos. Q captures the stateful fail-
ures of a program: the set of events not being refused (ref ′) having performed
trace tt, starting in state st. R captures the terminated behaviours, where a
final state is observed but no refusals. We describe the pattern of the underlying
reactive relations using the following constructs.

Definition 4.1 (Reactive Relational Operators).

I[b(st), t(st)] , RR(b(st) ∧ t(st) ≤ tt) (1)

E [b(st), t(st),E (st)] , RR(b(st) ∧ tt = t(st) ∧ (∀ e∈E (st) • e /∈ ref ′)) (2)

Φ[b(st), σ, t(st)] , RR(b(st) ∧ st
′ = σ(st) ∧ tt = t(st)) (3)

In this definition, we utilise expressions b, t , and E that refer only to the variables
by which they are parametrised. Namely, b(st) : B is a condition on st, t(st) :
seqEvent is a trace expression that describes a possible event sequence in terms
of st, and E (st) : PEvent is an expression that describes a set of events. Following
[24], we describe state updates with substitutions σ : Σ → Σ. We use Lx 7→ vM
to denote a substitution, which is the identity for every variable, except that v is

8 Simon Foster, Kangfeng Ye, Ana Cavalcanti, Jim Woodcock

assigned to x . Substitutions can also be applied to contracts and relations using
operator σ †P , and then Q [v/x] , Lx 7→ vM †Q . This operator obeys similar
laws to syntactic substitution, though it is a semantic operator [10].

I[b(st), t(st)] is a specification of initial behaviour used in preconditions.
It states that initially the state satisfies condition b, and t is a prefix of the
overall trace. E [b(st), t(st),E (st)] is used in periconditions to specify quiescent
observations, and corresponds to a failure trace. It specifies that the state vari-
ables initially satisfy b, the interaction described by t has occurred, and finally
we reach a quiescent phase where none of the events in E are being refused.
Φ[b(st), σ, t(st)] is used to encode final terminated observations in the postcon-
dition. It specifies that the initial state satisfies b, the state update σ is applied,
and the interaction t has occurred.

These operators are all deterministic, in the sense that they describe a single
interaction and state-update history. There is no need for explicit nondetermin-
ism here, as this is achieved using

∨
. These operators allow us to concisely

specify the basic operators of our theory as given below.

Definition 4.2 (Basic Reactive Operators).

〈σ〉C , [truer −| false | Φ[true, σ, 〈〉]] (1)

Do(a) , [truer −| E [true, 〈〉, {a}] | Φ[true, id , 〈a〉]] (2)

Stop , [truer −| E [true, 〈〉, ∅] | false] (3)

Generalised assignment 〈σ〉C is again inspired by [24]. It has a truer precondition
and a false pericondition: it has no intermediate observations. The postcondition
states that for any initial state (true), the state is updated using σ, and no events
are produced (〈〉). A singleton assignment x := v can be expressed using a state
update Lx 7→ vM. We define Skip , 〈id〉C , which leaves all variables unchanged.

Do(a) encodes an event action. Its pericondition states that no event has
occurred, and a is accepted. Its postcondition extends the trace by a, leaving
the state unchanged. We can denote Circus event prefix a → P as Do(a) # P .

Finally, Stop represents a deadlock: its pericondition states the trace is un-
changed and no events are being accepted. The postcondition is false as there is
no way to terminate. A Circus guard g & P can be denoted as (P 2 g 3Stop),
which behaves as P when g is true, and otherwise deadlocks.

To calculate contractual semantics, we need laws to reduce pre-, peri-, and
postconditions. These need to cater for various composition cases of operatorsd

, #, and ✷. So, we prove [13] the following composition laws for E and Φ.

Theorem 4.3 (Reactive Relational Compositions).

[b]⊤
r

P = Φ[b, id , 〈〉] # P (1)

Φ[b1, σ1, t1] # Φ[b2, σ2, t2] = Φ[b1 ∧ σ1 † b2, σ2 ◦ σ1, t1 a σ1 † t2] (2)

Φ[b1, σ1, t1] # E [b2, t2,E] = E [b1 ∧ σ1 † b2, t1 a σ1 † t2, σ1 †E] (3)

Φ[b1, σ1, t1]2 c3Φ[b2, σ2, t2] = Φ[b12c3b2, σ12c3σ2, t12c3t2] (4)

Calculational Verification of Reactive Programs 9

E [b1, t1,E1]2 c3 E [b2, t2,E2] = E [b12c3b2, t12c3t2,E12c3E2] (5)
(∧

i∈I
E [b(i), t ,E (i)]

)
= E

[∧
i∈I

b(i), t ,
⋃

i∈I
E (i)

]
(6)

Law (1) states that a precomposed test can be expressed using Φ. (2) states
that the composition of two terminated observations results in the conjunction
of the state conditions, composition of the state updates, and concatenation of
the traces. It is necessary to apply the initial state update σ1 as a substitution
to both the second state condition (s2) and the trace expression (t2). (3) is sim-
ilar, but accounts for the enabled events rather than state updates. (2) and (3)
are required because of Theorem 2.6-2, which sequentially composes a pericon-
dition with a postcondition, and a postcondition with a postcondition. (4) and
(5) show how conditional distributes through the operators. Finally, (6) shows
that a conjunction of intermediate observations with a common trace takes the
conjunction of the state conditions, and the union of the enabled events. It is
needed for external choice, which conjoins the periconditions (see §5).

In order to calculate preconditions, we need to consider the weakest precon-
dition operator. Theorem 2.6-2 requires that, in a sequential composition P # Q ,
we need to show that the postcondition of contract P satisfies the precondition
of contract Q . Theorem 4.3 explains how to eliminate most composition oper-
ators in a contract’s postcondition, but not in general ∨. Postconditions are,
therefore, typically expressed as disjunctions of the Φ operator, and so it suffices
to calculate its weakest precondition using the theorem below.

Theorem 4.4. Φ[s, σ, t] wpr P = (I[s, t] ⇒ (σ †P)[tt − t/tt])

In order for Φ[s, σ, t] to satisfy reactive condition P , whenever we start in the
state satisfying s and the trace t has been performed, P must hold on the
remainder of the trace (tt− t), and with the state update σ applied. We can now
use these laws, along with Theorem 2.6, to calculate the semantics of processes,
and to prove equality and refinement conjectures, as we illustrate below.

Example 4.5. We show that (x :=1 # Do(a.x) # x := x+2) = (Do(a.1) # x :=3).
By applying Definition 4.2 and Theorems 2.6 (2), 4.3, 4.4, both sides reduce to
[truer −| E [true, 〈〉, {a.1}] | Φ[true, {x 7→ 3}, 〈a.1〉]], which has a single quiescent
state, waiting for event a.1, and a single final state, where a.1 has occurred and
state variable x has been updated to 3. We calculate the left-hand side below.

(x :=1 # Do(a.x) # x := x + 2)

=




[truer −| false | Φ[true, Lx 7→ 1M, 〈〉]] #
[truer −| E [true, 〈〉, {a.x}] | Φ[true, id , 〈a.x 〉]] #
[truer −| false | Φ[true, Lx 7→ x + 1M, 〈〉]]


 [Def. 4.2]

=


 truer −

∣∣∣∣∣∣
Φ[true, Lx 7→ 1M, 〈〉] #
E [true, 〈〉, {a.x}]

∣∣∣∣∣∣

Φ[true, Lx 7→ 1M, 〈〉] #
Φ[true, id , 〈a.x 〉] #
Φ[true, Lx 7→ x + 2M, 〈〉]




[
Thm. 2.6,
Thm. 4.4

]

=

[
truer −

∣∣∣∣ E [true, 〈〉[1/x], {a.x}[1/x]]

∣∣∣∣
Φ[true, Lx 7→ 1M, 〈a.1〉] #
Φ[true, Lx 7→ x+2M, 〈〉]

] [
Thm. 4.3

]

10 Simon Foster, Kangfeng Ye, Ana Cavalcanti, Jim Woodcock

= [truer −| E [true, 〈〉, {a.1}] | Φ[true, {x 7→ 3}, 〈a.1〉]] �

Similarly, we can use our theorems, with the help of our mechanised proof strat-
egy in rdes-eq, to prove a number of general laws [13].

Theorem 4.6 (Stateful Failures-Divergences Laws).

〈σ〉C # [P1 −| P2 |P3] = [σ†P1 −| σ†P2 |σ†P3] (1)

〈σ〉C # Do(e) = Do(σ † e) # 〈σ〉C (2)

〈σ〉C # 〈ρ〉C = 〈ρ ◦ σ〉C (3)

Stop # P = Stop (4)

Law (1) shows how assignment distributes substitutions through a contract. (2)
and (3) are consequences of (1). (4) shows that deadlock is a left annihilator.

5 External Choice and Productivity

In this section we consider reasoning about programs with external choice, and
characterise the important subclass of productive contracts [3], which are also
essential in verifying recursive and iterative reactive programs.

An external choice P ✷ Q resolves whenever either P or Q engages in an
event or terminates. Thus, its semantics requires that we filter observations with
a non-empty trace. We introduce healthiness condition R4(P) , (P ∧ tt > 〈〉),
whose fixed points strictly increase the trace, and its dual R5(P) , (P ∧ tt = 〈〉)
where the trace is unchanged. We use these to define indexed external choice.

Definition 5.1 (Indexed External Choice).

✷ i ∈ I • [P1(i) −| P2(i) | P3(i)] ,
[∧

i∈I
P1(i) −

∣∣ (∧
i∈I

R5(P2(i))
)
∨
(∨

i∈I
R4(P2(i))

) ∣∣ ∨
i∈I

P3(i)
]

This enhances the binary definition [6, 7], and recasts our definition in [3] for
calculation. Like nondeterministic choice, the precondition requires that all con-
stituent preconditions are satisfied. In the pericondition R4 and R5 filter all
observations. We take the conjunction of all R5 behaviours: no event has oc-
curred, and all branches are offering to communicate. We take the disjunction of
all R4 behaviours: an event occurred, and the choice is resolved. In the postcon-
dition the choice is resolved, either by communication or termination, and so we
take the disjunction of all constituent postconditions. Since unbounded choice is
supported, we can denote indexed input prefix for any size of input domain A:

a?x :A → P(x) , ✷ x ∈ A • a.x → P(x)

We next show how R4 and R5 filter the various reactive relational operators,
which can be applied to reason about contracts involving external choice.

Theorem 5.2 (Trace Filtering).

R4
(∨

i∈I
P(i)

)
=
∨

i∈I
R4(P(i))

R4(Φ[s, σ, 〈〉]) = false

R4(Φ[s, σ, 〈a, ...〉]) = Φ[s, σ, 〈a, ...〉]

R5
(∨

i∈I
P(i)

)
=
∨

i∈I
R5(P(i))

R5(E [s, 〈〉,E]) = E [s, 〈〉,E]

R5(E [s, 〈a, ...〉,E]) = false

Calculational Verification of Reactive Programs 11

Both operators distribute through
∨

. Relations that produce an empty trace
yield false under R4 and are unchanged under R5 . Relations that produce a
non-empty trace yield false for R5 , and are unchanged underr R4 . We can now
filter the behaviours that do and do not resolve the choice, as exemplified below.

Example 5.3. Consider the calculation of a → b → Skip ✷ c → Skip. The left
branch has two quiescent observations, one waiting for a, and one for b having
performed a: its pericondition is E [true, 〈〉, {a}] ∨ E [true, 〈a〉, {b}]. Application
of R5 to this will yield the first disjunct, since the trace has not increased, and
R4 will yield the second disjunct. For the right branch there is one quiescent
observation, E [true, 〈〉, {c}], which contributes an empty trace and is R5 only.
The overall pericondition is (E [true, 〈〉, {a}] ∧ E [true, 〈〉, {c}]) ∨ E [true, 〈a〉, {b}],
which is simply E [true, 〈〉, {a, c}] ∨ E [true, 〈a〉, {b}]. ⊓⊔

By calculation we can now prove that (JNCSPK,✷,Stop) forms a commutative
and idempotent monoid, and Chaos, the divergent program, is its annihilator.
Sequential composition also distributes from the left and right through external
choice, but only when the choice branches are productive [3].

Definition 5.4. A contract [P1 −| P2 | P3] is productive when P3 is R4 healthy.

A productive contract is one that, whenever it terminates, strictly increases the
trace. For example a → Skip is productive, but Skip is not. Constructs that do
not terminate, like Chaos, are also productive. The imposition of R4 ensures
that only final observations that increase the trace, or are false, are admitted.

We define healthiness condition PCSP, which extends NCSP with produc-
tivity. We also define ICSP, which formalises instantaneous contracts where the
postcondition is R5 healthy and the pericondition is false. For example, both
Skip and x := v are ICSP healthy as they do not contribute to the trace and
have no intermediate observations. This allows us to prove the following laws.

Theorem 5.5 (External Choice Distributivity).

(✷ i ∈I • P(i)) # Q = ✷ i ∈I • (P(i) # Q) [if, ∀ i ∈I ,P(i) is PCSP healthy]

P # (✷ i ∈I • Q(i)) = ✷ i ∈I • (P # Q(i)) [if P is ICSP healthy]

The first law follows because every P(i), being productive, must resolve the
choice before terminating, and thus it is not possible to reach Q before this
occurs. It generalises the standard guarded choice distribution law for CSP [6,
page 211]. The second law follows for the converse reason: since P cannot resolve
the choice with any of its behaviour, it is safe to execute it first.

Productivity also forms an important criterion for guarded recursion that we
utilise in §6 to calculate fixed points. PCSP is closed under several operators.

Theorem 5.6. (1) Miracle, Stop, Do(a) are PCSP; (2) P #Q is PCSP if either
P or Q is PCSP; (3) ✷ i ∈ I • P(i) is PCSP if, for all i ∈I , P(i) is PCSP.

Calculation of external choice is now supported, and a notion of productivity
defined. In the next section we use the latter for calculation of while-loops.

12 Simon Foster, Kangfeng Ye, Ana Cavalcanti, Jim Woodcock

6 While Loops and Reactive Invariants

In this section we complete our verification strategy by adding support for iter-
ation. Iterative programs can be constructed using the reactive while loop.

b ⊛ P , (µX • P # X 2 b 3Skip).

We use the weakest fixed-point so that an infinite loop with no observable activity
corresponds to the divergent action Chaos, rather than Miracle. For example,
we can show that (true ⊛ x := x +1) = Chaos. The true condition is not a
problem in this context because, unlike its imperative cousin, the reactive while
loop pauses for interaction with its environment during execution, and therefore
infinite executions are observable and therefore potentially useful.

In order to reason about such behaviour, we need additional calculational
laws. A fixed-point (µX • F (X)) is guarded provided at least one event is
contributed to the trace by F prior to it reaching X . For instance, µX • a → X

is guarded, but µX • y := 1 # X is not. Hoare and He’s theorem [6, theorem
8.1.13, page 206] states that if F is guarded, then there is a unique fixed-point
and hence (µX • F (X)) = (νX • F (X)). Then, provided F is continuous, we
can invoke Kleene’s fixed-point theorem to calculate νF . Our previous result [3]
shows that if P is productive, then λX • P # X is guarded, and so we can
calculate its fixed-point. We now generalise this for the function above.

Theorem 6.1. If P is productive, then (µX • P # X 2 b 3Skip) is guarded.

Proof. In addition to our previous theorem [3], we use the following properties:

– If X is not mentioned in P then λX • P is guarded;
– If F and G are both guarded, then λX • F (X)2 b 3G(X) is guarded. ⊓⊔

This allows us to convert the fixed-point into an iterative form. In particular,
we can prove the following theorem that expresses it in terms of Kleene star.

Theorem 6.2. If P is PCSP healthy then b ⊛ P = ([b]⊤
r

P)∗ # [¬b]⊤
r
.

This theorem is similar to the usual imperative definition [21,22]. P is executed
multiple times when b is true initially, but each run concludes when b is false.
However, due to the embedding of reactive behaviour, there is more going on than
meets the eye; the next theorem shows how to calculate an iterative contract.

Theorem 6.3. If R is R4 healthy then

b ⊛ [P −| Q |R] = [([b]⊤
r
#R)∗ wpr (b⇒P) −| ([b]⊤

r
R)∗ # [b]⊤

r
#Q | ([b]⊤

r
#R)∗ # [¬b]⊤

r
]

The precondition requires that any number of R iterations, where b is initially
true, satisfies P . This ensures that the contract does not violate its own precon-
dition from one iteration to the next. The pericondition states that intermediate
observations have R executing several times, with b true, and following this b

remains true and the contract is quiescent (Q). The postcondition is similar, but

Calculational Verification of Reactive Programs 13

after several iterations, b becomes false and the loop terminates, which is the
standard relational form of a while loop.

Theorem 6.3 can be utilised to prove a refinement introduction law for the
reactive while loop. This employs “reactive invariant” relations, which describe
how both the trace and state variables are permitted to evolve.

Theorem 6.4. [I1 −| I2 | I3] ⊑ b ⊛ [Q1 −| Q2 |Q3] provided that:

1. the assumption is weakened (([b]⊤
r

Q3)
∗ wpr (b ⇒ Q1) ⊑ I1);

2. when b holds, Q2 establishes the I2 pericondition invariant (I2 ⊑ ([b]⊤
r

Q2))
and, Q3 maintains it (I2 ⊑ [b]⊤

r
Q3 # I2);

3. postcondition invariant I3 is established when b is false (I3 ⊑ [¬b]⊤
r
) and Q3

establishes it when b is true (I3 ⊑ [b]⊤
r

Q3 # I3).

Proof. By application of refinement introduction, with Theorems 2.2-3 and 6.3.

Theorem 6.4 shows the conditions under which an iterated reactive contract sat-
isfies an invariant contract [I1 −| I2 | I3]. Relations I2 and I3 are reactive invariants
that must hold in quiescent and final observations, respectively. Both can refer
to st and tt, I2 can additionally refer to ref ′, and I3 to st

′. Combined with the
results from §4 and §5, this result provides the basis for a proof strategy for
iterative reactive programs that we now exemplify.

7 Verification Strategy for Reactive Programs

Our collected results give rise to an automated verification strategy for iter-
ative reactive programs, whereby we (1) calculate the contract of a reactive
program, (2) use our equational theory to simplify the underlying reactive re-
lations, (3) identify suitable invariants for reactive while loops, and (4) finally
prove refinements using relational calculus. Although the underlying relations
can be quite complex, our equational theory from §4 and §5, aided by the Is-
abelle/HOL simplifier, can be used to rapidly reduce them to more compact
forms amenable to automated proof. In this section we illustrate this strategy
with the buffer in Example 2.5. We prove two properties: (1) deadlock freedom,
and (2) that the order of values produced is the same as those consumed.

We first calculate the contract of the main loop in the Buffer process and
then use this to calculate the overall contract for the iterative behaviour.

Theorem 7.1 (Loop Body). The body of the loop is [truer −| B2 | B3] where

B2 = E
[
true, 〈〉,

⋃
v∈N

{inp.v} ∪ ({out .head(bf)}2 0 < #bf 3 ∅)
]

B3 =

((∨
v∈N

Φ[true, {bf 7→ bf a 〈v〉}, 〈inp.v〉]
)
∨

Φ[0 < #bf , {bf 7→ tail(bf)}, 〈out .head(bf)〉]

)

The truer precondition implies no divergence. The pericondition states that
every input event is enabled, and the output event is enabled if the buffer is non-
empty. The postcondition contains two possible final observations: (1) an input

14 Simon Foster, Kangfeng Ye, Ana Cavalcanti, Jim Woodcock

event occurred and the buffer variable was extended; or (2) provided the buffer
was non-empty initially, then the buffer’s head is output and bf is contracted.

Proof. To exemplify, we calculate the left-hand side of the choice, employing The-
orems 2.6, 4.2, 4.3, and 5.2. The entire calculation is automated in Isabelle/UTP.

inp?v → bf := bf a 〈v〉

= ✷ v ∈N • Do(inp.v) # bf := bf a 〈v〉 [Defs]

= ✷ v ∈N •

(
[truer −| E [true, 〈〉, {inp.v}] | Φ[true, id , 〈inp.v〉]] #
[truer −| false | Φ[true, Lbf 7→ bf a 〈v〉M, 〈〉]]

)
[4.2]

= ✷ v ∈N •

[
truer −

∣∣∣∣
E [true, 〈〉, {inp.v}]
∨ false

∣∣∣∣
Φ[true, id , 〈inp.v〉] #
Φ[true, Lbf 7→bf a〈v〉M, 〈〉]

]
[2.6, 4.4]

= ✷v ∈N • [truer −| E [true, 〈〉, {inp.v}] |Φ[true, Lbf 7→bf a〈v〉M, 〈inp.v〉]] [4.3]

=

[
truer −

∣∣∣∣∣ E
[

true, 〈〉,
⋃

v∈N

{inp.v}

]∣∣∣∣∣
∨

v∈N

Φ[true, Lbf 7→bf a〈v〉M, 〈inp.v〉]
]

[5.1, 5.2]

Though this calculation seems complicated, in practice it is fully automated and
thus a user need not be concerned with these minute calculational details, but
can rather focus on finding suitable reactive invariants. ⊓⊔

Then, by Theorem 6.3 we can calculate the overall behaviour of the buffer.

Buffer = [truer −| Φ[true, {bf 7→ 〈〉}, 〈〉] # B∗

3 # B2 | false]

This is a non-terminating contract where every quiescent behaviour begins with
an empty buffer, performs some sequence of buffer inputs and outputs accompa-
nied by state updates (B∗

3), and is finally offering the relevant input and output
events (B2). We can now employ Theorem 6.4 to verify the buffer. First, we
tackle deadlock freedom, which can be proved using the following refinement.

Theorem 7.2 (Deadlock Freedom).
[

truer −
∣∣∣
∨

s,t,E ,e
E [s, t , {e} ∪ E]

∣∣∣ truer

]
⊑ Buffer

Since only quiescent observations can deadlock, we only constrain the pericondi-
tion. It characterises observations where at least one event e is being accepted:
there is no deadlock. This theorem can be discharged automatically in 1.8s on
an Intel i7-4790 desktop machine. We next tackle the second property.

Theorem 7.3 (Buffer Order Property). The sequence of items output is a
prefix of those that were previously input. This can be formally expressed as

[truer −| outps(tt) ≤ inps(tt) | truer] ⊑ Buffer

where inps(t), outps(t) : seq N extract the sequence of input and output elements
from the trace t , respectively. The postcondition is left unconstrained as Buffer

does not terminate.

Calculational Verification of Reactive Programs 15

Proof. First, we identify the reactive invariant I , outps(tt) ≤ bf a inps(tt),
and show that [truer −| I | truer] ⊑ truer ⊛ [truer −| B2 |B3]. By Theorem 6.4 it
suffices to show case (2), that is I ⊑ B2 and I ⊑ B3 # I , as the other two cases are
vacuous. These two properties can be discharged by relational calculus. Second,
we prove that [truer −| outps(tt) ≤ inps(tt) | truer] ⊑ bf := 〈〉 # [truer −| I | truer].
This holds, by Theorem 4.6-1, since I [〈〉/bf] = outps(tt) ≤ inps(tt). Thus, the
overall theorem holds by monotonicity of # and transitivity of ⊑. The proof is
semi-automatic — since we have to manually apply induction with Theorem 6.4
— with the individual proof steps taking 2.2s in total. ⊓⊔

8 Conclusion

We have demonstrated an effective verification strategy for reactive programs
employing reactive relations and Kleene algebra. Our theorems and verification
tool can be found in our theory repository2, together with companion proofs.

Related work includes the works of Struth et al. on verification of impera-
tive programs [21,22] using Kleene algebra for verification-condition generation,
which our work heavily draws upon. Automated proof support for the failures-
divergences model was previously provided by the CSP-Prover tool [25], which
can be used to verify infinite-state systems in CSP. Our work is different both in
its contractual semantics, and also in our explicit handling of state, which allows
us to express variable assignments.

Our work also lies within the “design-by-contract” field [4]. The refinement
calculus of reactive systems [26] is a language based on property transformers
containing trace information. Like our work, they support reactive systems that
are non-deterministic, non-input-receptive, and infinite state. The main differ-
ences are our handling of state variables, the basis in relational calculus, and our
failures-divergences semantics. Nevertheless, our contract framework [3] can be
linked to those results, and we expect to derive an assume-guarantee calculus.

In future work, we will extend our calculation strategy to parallel composi-
tion. We aim to apply it to more substantial examples, and are currently using
it to build a prototype tactic for verifying robotic controllers [27]. In this direc-
tion, our semantics and techniques will be also be extended to cater for real-time,
probabilistic, and hybrid computational behaviours [19].

Acknowledgments

This research is funded by the RoboCalc project3, EPSRC grant EP/M025756/1.

References

1. Harel, D., Pneuli, A.: On the development of reactive systems. In: Logics and
Models of Concurrent Systems. Volume 13 of NATO ASI. Springer (1985)

2 Isabelle/UTP: https://github.com/isabelle-utp/utp-main
3 RoboCalc Project: https://www.cs.york.ac.uk/circus/RoboCalc/

16 Simon Foster, Kangfeng Ye, Ana Cavalcanti, Jim Woodcock

2. Bainomugisha, E., Carreton, A.L., Cutsem, T.V., Mostinckx, S., De Meuter, W.: A
survey on reactive programming. ACM Computing Surveys 45(4) (August 2013)

3. Foster, S., Cavalcanti, A., Canham, S., Woodcock, J., Zeyda, F.: Unifying theories
of reactive design contracts. Submitted to Theoretical Computer Science (Dec
2017) Preprint: https://arxiv.org/abs/1712.10233.

4. Meyer, B.: Applying “design by contract”. IEEE Computer 25(10) (1992) 40–51
5. Hehner, E.C.R.: A Practical Theory of Programming. Springer (1993)
6. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
7. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal

Aspects of Computing 21 (2009) 3–32
8. Kozen, D.: On Kleene algebras and closed semirings. In: MFCS. Volume 452 of

LNCS., Springer (1990) 26–47
9. Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in unifying theories

of programming. In: PSSE. Volume 3167 of LNCS. Springer (2006) 220–268
10. Foster, S., Zeyda, F., Woodcock, J.: Unifying heterogeneous state-spaces with

lenses. In: ICTAC. LNCS 9965, Springer (2016)
11. Foster, S.: Kleene algebra in Unifying Theories of Programming. Technical report,

University of York (2018) http://eprints.whiterose.ac.uk/129359/.
12. Foster, S., et al.: Reactive designs in Isabelle/UTP. Technical report, University

of York (2018) http://eprints.whiterose.ac.uk/129386/.
13. Foster, S., et al.: Stateful-failure reactive designs in Isabelle/UTP. Technical

report, University of York (2018) http://eprints.whiterose.ac.uk/129768/.
14. Guttman, W., Möller, B.: Normal design algebra. Journal of Logic and Algebraic

Programming 79(2) (February 2010) 144–173
15. Möller, B., Höfner, P., Struth, G.: Quantales and temporal logics. In: AMAST.

Volume 4019 of LNCS., Springer (2006) 263–277
16. Santos, T., Cavalcanti, A., Sampaio, A.: Object-Orientation in the UTP. In: UTP

2006. Volume 4010 of LNCS., Springer (2006) 20–38
17. Sherif, A., Cavalcanti, A., He, J., Sampaio, A.: A process algebraic framework for

specification and validation of real-time systems. Formal Aspects of Computing
22(2) (2010) 153–191

18. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
19. Foster, S., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying theories of time with

generalised reactive processes. Information Processing Letters 135 (2018) 47–52
20. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of

programs. Communications of the ACM 18(8) (1975) 453–457
21. Armstrong, A., Gomes, V., Struth, G.: Building program construction and verifi-

cation tools from algebraic principles. Formal Aspects of Computing 28(2) (2015)
22. Gomes, V.B.F., Struth, G.: Modal Kleene algebra applied to program correctness.

In: Formal Methods. Volume 9995 of LNCS., Springer (2016) 310–325
23. Zhan, N., Kang, E.Y., Liu, Z.: Component publications and compositions. In:

UTP. Volume 5713 of LNCS., Springer (2008) 238–257
24. Back, R.J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer

(1998)
25. Isobe, Y., Roggenbach, M.: CSP-Prover: a proof tool for the verification of scalable

concurrent systems. Journal of Computer Software, Japan Society for Software
Science and Technology 25(4) (2008) 85–92

26. Preoteasa, V., Dragomir, I., Tripakis, S.: Refinement calculus of reactive systems.
In: Intl. Conf. on Embedded Systems (EMSOFT), IEEE (October 2014)

27. Miyazawa, A., Ribieiro, P., Li, W., Cavalcanti, A., Timmis, J.: Automatic property
checking of robotic applications. In: Intl. Conf. on Intelligent Robots and Systems
(IROS), IEEE (2017) 3869–3876

Calculational Verification of Reactive Programs 17

A UTP Theory Definitions

In this appendix, we summarise our theory of reactive design contracts. The
definitions are all mechanised in accompanying Isabelle/HOL reports [12,13].

A.1 Observational Variables

We declare two sets T and Σ that denote the sets of traces and state spaces,
respectively, and operators ̂ : T → T → T and ε : T . We require that (T , ̂, ε)
forms a trace algebra [19], which is a form of cancellative monoid. Example mod-
els include (N,+, 0) and (seq A,a, 〈〉). We declare the following observational
variables that are used in both our UTP theories:

ok , ok ′ : B – indicate divergence in the prior and present relation;
wait ,wait ′ : B – indicate quiescence in the prior and present relation;
st, st ′ : Σ – the initial and final state;
tr , tr ′ : T – the trace of the prior and present relation.

Since the theory is extensible, we also allow further observational variables to
be added, which are denoted by the variables r and r ′.

A.2 Healthiness Conditions

We first describe the healthiness conditions of reactive relations.

Definition A.1 (Reactive Relation Healthiness Conditions).

R1(P) , P ∧ tr ≤ tr ′

R2c(P) , P [ε, tr ′ − tr/tr , tr ′]2 tr ≤ tr ′ 3P

RR(P) , ∃(ok , ok ′,wait ,wait ′) • R1(R2c(P))

RR healthy relations do not refer to ok or wait and have a well-formed trace
associated with them. The latter is ensured by the reactive process healthiness
conditions [6,9,19], R1 and R2 c , which justify the existence of the trace pseudo
variable tt , tr ′ − tr . RR is closed under relational calculus operators false, ∨,
∧, and #, but not true, ¬, ⇒, or II . We therefore define healthy versions below.

Definition A.2 (Reactive Relation Operators).

truer , R1(true)

¬r P , R1(¬P)

P ⇒r Q , ¬r P ∨ Q

P wpr Q , ¬r (P # (¬r Q))

IIr , (tr ′ = tr ∧ st
′ = st ∧ r ′ = r)

We define a reactive complement ¬r P , reactive implication P ⇒r Q , and reactive
true truer , which with the other connectives give rise to a Boolean algebra [3].
We also define the reactive skip IIr , which is the unit of #, and the reactive
weakest precondition operator wpr . The latter is similar to the standard UTP
definition of weakest precondition [6], but uses the reactive complement.

We next define the healthiness conditions of reactive contracts.

18 Simon Foster, Kangfeng Ye, Ana Cavalcanti, Jim Woodcock

Definition A.3 (Reactive Designs Healthiness Conditions).

R3h(P) , IIR 2wait 3P

RD1(P) , ok ⇒r P

RD2(P) , P # J

RD3(P) , P # IIR

IIR , RD1((∃ st • IIr)2wait 3 IIr)

Rs , R1 ◦ R2c ◦ R3h

SRD(P) , RD1 ◦ RD2 ◦ Rs

NSRD(P) , RD1 ◦ RD3 ◦ Rs

R3h states that if the predecessor is waiting then a reactive design behaves like
IIR , the reactive design identity. RD1 is analagous to H1 from the theory of
designs [6,9], and introduces divergent behaviour: if the predecessor is divergent
(¬ok), then a reactive design behaves like truer meaning that the only obser-
vation is that the trace is extended. RD2 is identical to H2 from the theory of
designs [6, 9]. RD3 states that IIR is a right unit of sequential composition. Rs

composes the reactive healthiness conditions and R3h . We then finally have the
healthiness conditions for reactive designs: SRD for “stateful reactive designs”,
and NSRD for “normal stateful reactive designs”.

Next we define the reactive contract operator.

Definition A.4 (Reactive Contracts).

P ⊢ Q , (ok ∧ P) ⇒ (ok ′ ∧ Q)

P ⋄ Q , P 2wait ′ 3Q

[P −| Q |R] , Rs(P ⊢ Q ⋄ R)

A reactive contract is a “reactive design” [7, 9]. We construct a UTP design [6]
using the design turnstile operator, P ⊢ Q , and then apply Rs to the resulting
construction. The postcondition of the underlying design is split into two cases
for wait ′ and ¬wait ′, which indicate whether the observation is quiescent, and
correspond to the peri- or postcondition.

Finally, we define the healthiness conditions that specialise our theory to
stateful-failure reactive designs.

Definition A.5 (Stateful-Failure Healthiness Conditions).

Skip , [truer −| false | tt = 〈〉 ∧ st
′ = st]

CSP3(P) , Skip # P
CSP4(P) , P # Skip

NCSP(P) , NSRD ◦ CSP3 ◦ CSP4

Skip is similar to IIR , but does not refer to ref in the postcondition. If P is CSP3

healthy then it cannot refer to ref . If P is CSP4 healthy then the postcondition
cannot refer to ref ′, but the pericondition can: refusals are only observable when
P is quiescent [9, 18].

	Calculational Verification of Reactive Programs with Reactive Relations and Kleene Algebra
	Introduction
	Preliminaries
	Linking UTP and Kleene Algebra
	Reactive Relations of Stateful Failures-Divergences
	External Choice and Productivity
	While Loops and Reactive Invariants
	Verification Strategy for Reactive Programs
	Conclusion
	UTP Theory Definitions
	Observational Variables
	Healthiness Conditions

