307 research outputs found

    Estimation of the normal contact stiffness for frictional interface in sticking and sliding conditions

    Get PDF
    Modeling of frictional contact systems with high accuracy needs the knowledge of several contact parameters, which are mainly related to the local phenomena at the contact interfaces and affect the complex dynamics of mechanical systems in a prominent way. This work presents a newer approach for identifying reliable values of the normal contact stiffness between surfaces in contact, in both sliding and sticking conditions. The combination of experimental tests, on a dedicated set-up, with finite element modeling, allowed for an indirect determination of the normal contact stiffness. The stiffness was found to increase with increasing contact pressure and decreasing roughness, while the evolution of surface topography and third-body rheology affected the contact stiffness when sliding

    Infinite index extensions of local nets and defects

    Get PDF
    Subfactor theory provides a tool to analyze and construct extensions of Quantum Field Theories, once the latter are formulated as local nets of von Neumann algebras. We generalize some of the results of [LR95] to the case of extensions with infinite Jones index. This case naturally arises in physics, the canonical examples are given by global gauge theories with respect to a compact (non-finite) group of internal symmetries. Building on the works of Izumi, Longo, Popa [ILP98] and Fidaleo, Isola [FI99], we consider generalized Q-systems (of intertwiners) for a semidiscrete inclusion of properly infinite von Neumann algebras, which generalize ordinary Q-systems introduced by Longo [Lon94] to the infinite index case. We characterize inclusions which admit generalized Q-systems of intertwiners and define a braided product among the latter, hence we construct examples of QFTs with defects (phase boundaries) of infinite index, extending the family of boundaries in the grasp of [BKLR16].Comment: 50 page

    Numerical and experimental analysis of nonlinear vibrational response due to pressure-dependent interface stiffness

    Get PDF
    Modelling interface interaction with wave propagation in a medium is a fundamental requirement for several types of application, such as structural diagnostic and quality control. In order to study the influence of a pressure-dependent interface stiffness on the nonlinear response of contact interfaces, two nonlinear contact laws are investigated. The study consists of a complementary numerical and experimental analysis of nonlinear vibrational responses due to the contact interface. The laws investigated here are based on an interface stiffness model, where the stiffness property is described as a nonlinear function of the nominal contact pressure. The results obtained by the proposed laws are compared with experimental results. The nonlinearity introduced by the interface is highlighted by analysing the second harmonic contribution and the vibrational time response. The analysis emphasizes the dependence of the system response, i.e., fundamental and second harmonic amplitudes and frequencies, on the contact parameters and in particular on contact stiffness. The study shows that the stiffness-pressure trend at lower pressures has a major effect on the nonlinear response of systems with contact interfaces

    Hearing faces: how the infant brain matches the face it sees with the speech it hears

    Get PDF
    Speech is not a purely auditory signal. From around 2 months of age, infants are able to correctly match the vowel they hear with the appropriate articulating face. However, there is no behavioral evidence of integrated audiovisual perception until 4 months of age, at the earliest, when an illusory percept can be created by the fusion of the auditory stimulus and of the facial cues (McGurk effect). To understand how infants initially match the articulatory movements they see with the sounds they hear, we recorded high-density ERPs in response to auditory vowels that followed a congruent or incongruent silently articulating face in 10-week-old infants. In a first experiment, we determined that auditory–visual integration occurs during the early stages of perception as in adults. The mismatch response was similar in timing and in topography whether the preceding vowels were presented visually or aurally. In the second experiment, we studied audiovisual integration in the linguistic (vowel perception) and nonlinguistic (gender perception) domain. We observed a mismatch response for both types of change at similar latencies. Their topographies were significantly different demonstrating that cross-modal integration of these features is computed in parallel by two different networks. Indeed, brain source modeling revealed that phoneme and gender computations were lateralized toward the left and toward the right hemisphere, respectively, suggesting that each hemisphere possesses an early processing bias. We also observed repetition suppression in temporal regions and repetition enhancement in frontal regions. These results underscore how complex and structured is the human cortical organization which sustains communication from the first weeks of life on

    Transcriptional and Functional Studies of a Cd(II)/Pb(II)-Responsive Transcriptional Regulator(CmtR) from Acidithiobacillus ferrooxidans ATCC 23270

    Get PDF
    The acidophilic Acidithiobacillusferrooxidans can resist exceptionally high cadmium (Cd) concentrations. This property is important for its use in biomining processes, where Cd and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of that a Cd(II)/Pb(II)-responsive transcriptional regulator (CmtR) was possibly related to Cd homeostasis. The expression of the CmtR was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cd. The putative A. ferrooxidans Cd resistance determinant was found to be upregulated when this bacterium was exposed to Cd in the range of 15–30 mM. The CmtR from A. ferrooxidans was cloned and expressed in Escherichiacoli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. UV–Vis spectroscopic measurements showed that the reconstruction CmtR was able to bind Cd(II) forming Cd(II)–CmtR complex in vitro. The sequence alignment and molecular modeling showed that the crucial residues for CmtR binding were likely to be Cys77, Cys112, and Cys121. The results reported here strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cd including the Cd(II)/Pb(II)-responsive transcriptional regulator

    Inference algorithms for gene networks: a statistical mechanics analysis

    Full text link
    The inference of gene regulatory networks from high throughput gene expression data is one of the major challenges in systems biology. This paper aims at analysing and comparing two different algorithmic approaches. The first approach uses pairwise correlations between regulated and regulating genes; the second one uses message-passing techniques for inferring activating and inhibiting regulatory interactions. The performance of these two algorithms can be analysed theoretically on well-defined test sets, using tools from the statistical physics of disordered systems like the replica method. We find that the second algorithm outperforms the first one since it takes into account collective effects of multiple regulators

    Reconstructing anatomy from electro-physiological data

    Get PDF
    Here we show how it is possible to make estimates of brain structure based on MEG data. We do this by reconstructing functional estimates onto distorted cortical manifolds parameterised in terms of their spherical harmonics. We demonstrate that both empirical and simulated MEG data give rise to consistent and plausible anatomical estimates. Importantly, the estimation of structure from MEG data can be quantified in terms of millimetres from the true brain structure. We show, for simulated data, that the functional assumptions which are closer to the functional ground-truth give rise to anatomical estimates that are closer to the true anatomy

    Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis

    Get PDF
    Variation in DNA methylation enables plants to inherit traits independently of changes to DNA sequence. Here, we have screened an Arabidopsis population of epigenetic recombinant inbred lines (epiRILs) for resistance against Hyaloperonospora arabidopsidis (Hpa). These lines share the same genetic background, but show variation in heritable patterns of DNA methylation. We identified 4 epigenetic quantitative trait loci (epiQTLs) that provide quantitative resistance without reducing plant growth or resistance to other (a)biotic stresses. Phenotypic characterisation and RNA-sequencing analysis revealed that Hpa-resistant epiRILs are primed to activate defence responses at the relatively early stages of infection. Collectively, our results show that hypomethylation at selected pericentromeric regions is sufficient to provide quantitative disease resistance, which is associated with genome-wide priming of defence-related genes. Based on comparisons of global gene expression and DNA methylation between the wild-type and resistant epiRILs, we discuss mechanisms by which the pericentromeric epiQTLs could regulate the defence-related transcriptome
    • 

    corecore