358 research outputs found

    Estimation of the normal contact stiffness for frictional interface in sticking and sliding conditions

    Get PDF
    Modeling of frictional contact systems with high accuracy needs the knowledge of several contact parameters, which are mainly related to the local phenomena at the contact interfaces and affect the complex dynamics of mechanical systems in a prominent way. This work presents a newer approach for identifying reliable values of the normal contact stiffness between surfaces in contact, in both sliding and sticking conditions. The combination of experimental tests, on a dedicated set-up, with finite element modeling, allowed for an indirect determination of the normal contact stiffness. The stiffness was found to increase with increasing contact pressure and decreasing roughness, while the evolution of surface topography and third-body rheology affected the contact stiffness when sliding

    Competitive segmentation of the hippocampus and the amygdala from MRI scans

    Get PDF
    The hippocampus and the amygdala are two brain structures which play a central role in several fundamental cognitive processes. Their segmentation from Magnetic Resonance Imaging (MRI) scans is a unique way to measure their atrophy in some neurological diseases, but it is made difficult by their complex geometry. Their simultaneous segmentation is considered here through a competitive homotopic region growing method. It is driven by relational anatomical knowledge, which enables to consider the segmentation of atrophic structures in a straightforward way. For both structures, this fast algorithm gives results which are comparable to manual segmentation with a better reproducibility. Its performances regarding segmentation quality, automation and computation time, are amongst the best published data.L’hippocampe et l’amygdale sont deux structures cérébrales intervenant dans plusieurs fonctions cognitives fondamentales. Leur segmentation, à partir de volumes d’imagerie par résonance magnétique (IRM), est un outil essentiel pour mesurer leur atteinte dans certaines pathologies neurologiques, mais elle est rendue difficile par leur géométrie complexe. Nous considérons leur segmentation simultanée par une méthode de déformation homotopique compétitive de régions. Celle-ci est guidée par des connaissances anatomiques relationnelles ; ceci permet de considérer directement des structures atrophiées. Rapide, l’algorithme donne, pour les deux structures, des résultats comparables à la segmentation manuelle avec une meilleure reproductibilité. Ses performances, concernant la qualité de la segmentation, le degré d’automatisation et le temps de calcul, sont parmi les meilleures de la littérature

    Multiscale seismic characterization and monitoring of a potentially unstable rock mass: the Madonna del Sasso (NW Italy) rockfall

    Get PDF
    Active (e.g. surface refraction and cross-hole tomography) and passive (monitoring of microseismic events) seismic methods can provide a proper characterization of the inner structure of the rock mass and are key to the comprehension of the mechanisms enhancing the instability of rock masses.We propose a multiscale approach for the characterization of the potentially unstable granitic cliff of Madonna del Sasso (NW Italian Alps) integrating prospecting surveys, laboratory tests, long-term microseismic monitoring and numerical modeling. The complex 3-D fracture setting, the geometry of the unstable sector was achieved through field observations, photogrammetric geomechanical analysis and interpretation of on-site seismic surveys, which revealed to be fundamental for constraining the fracture geometry and opening at depth within the rock mass. Physical and mechanical properties of the investigated medium were obtained through laboratory tests on granite samples. Continuous monitoring of ambient vibration at the site (October 2013 - present) did not highlight irreversible changes in the rock mass properties precursory to an acceleration to failure. However, a strong thermal control was found to govern the stability of the cliff, with reversible seasonal opening and closing of fractures resulting from thermal contraction and expansion. Moreover, the vibration modes of the unstable sector were found to be strongly controlled by the complex 3-D geometry of the main fracture planes affecting the site. Detection and location of microseismic events within the prone-to-fall rock mass highlighted the concentration of low energy releases close to the major fracture planes. Microseismic monitoring at the laboratory scale of deformation and rupture processes is expected to further highlight the relationships between energy release, seismic signatures and seismic sources. Finally, finite element modeling on the 3-D geometry allowed an experimental validation and interpretation

    Numerical and experimental analysis of nonlinear vibrational response due to pressure-dependent interface stiffness

    Get PDF
    Modelling interface interaction with wave propagation in a medium is a fundamental requirement for several types of application, such as structural diagnostic and quality control. In order to study the influence of a pressure-dependent interface stiffness on the nonlinear response of contact interfaces, two nonlinear contact laws are investigated. The study consists of a complementary numerical and experimental analysis of nonlinear vibrational responses due to the contact interface. The laws investigated here are based on an interface stiffness model, where the stiffness property is described as a nonlinear function of the nominal contact pressure. The results obtained by the proposed laws are compared with experimental results. The nonlinearity introduced by the interface is highlighted by analysing the second harmonic contribution and the vibrational time response. The analysis emphasizes the dependence of the system response, i.e., fundamental and second harmonic amplitudes and frequencies, on the contact parameters and in particular on contact stiffness. The study shows that the stiffness-pressure trend at lower pressures has a major effect on the nonlinear response of systems with contact interfaces

    Seismic noise parameters as indicators of reversible modifications in slope stability: a review

    Get PDF
    Continuous ambient seismic monitoring of potentially unstable sites is increasingly attracting the attention of researchers for precursor recognition and early warning purposes. Twelve cases of long-term continuous noise monitoring have been reported in the literature between 2012 and 2020. Only in a few cases rupture was achieved and irreversible drops in resonance frequency values or shear wave velocity extracted from noise recordings were documented. On the other hand, all monitored sites showed clear reversible fluctuations of the seismic parameters on a daily and seasonal scale due to changes in external weather conditions (air temperature and precipitation). A quantitative comparison of these reversible modifications is used to gain insight into the mechanisms driving the site seismic response. Six possible mechanisms were identified, including three temperature-driven mechanisms (temperature control on fracture opening/closing, superficial stress conditions and bulk rigidity), one precipitation-driven mechanism (water infiltration effect) and two mechanisms sensitive to both temperature and precipitation (ice formation and clay behavior). The reversible variations in seismic parameters under the meteorological constraints are synthesized and compared to the irreversible changes observed prior to failure in different geological conditions
    corecore