315 research outputs found

    Orientation of drill core by use of borehole geophysical imaging

    Get PDF
    Borehole core must be orientated relative to a geographic coordinate system if meaningful geological, structural and geotechnical information is to be derived from it. This can be achieved by matching core features with features revealed by geophysical images of the borehole wall. The orientation of a reference line marked on the drill core can thereby be calculated, along with the dip and azimuth of any significant features found in the core. A technique developed by the British Geological Survey (BGS) on the basis of borehole imaging is described here and evaluated in the light of results obtained in the orientation of core extracted on behalf of United Kingdom Nirex, Ltd (Nirex)

    Fitness declines toward range limits and local adaptation to climate affect dispersal evolution during climate-induced range shifts

    Get PDF
    Sherpa Romeo yellow journal (pre-print only, accepted for publication)Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low-­latitude/low-­elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: a) climate-­‐induced fitness declines toward range limits, and b) local adaptation to a shifting climate gradient. We simulate a species distributed continuously along a temperature gradient using a spatially explicit, individual-­‐ based model. We compare range-­‐wide dispersal evolution during climate stability vs. directional climate change, with uniform fitness vs. fitness that declines toward range limits (RLs), and for a single climate genotype vs. multiple genotypes locally adapted to temperature. Dispersal decreased toward stable RLs when range-­‐wide fitness was uniform, but increased when fitness declined toward RLs, due to highly dispersive genotypes maintaining sink populations at RLs, increased kin selection in smaller populations, and an emergent fitness asymmetry that favoured dispersal in low-­‐quality habitat. However, this initial dispersal advantage at low-­‐fitness RLs did not facilitate climate tracking, as it was outweighed by an increased probability of extinction. Locally-­‐adapted genotypes benefited from staying close to their climate optima; this selected against dispersal under stable climates but for increased dispersal throughout shifting ranges, compared to cases without local adaptation. Dispersal increased at expanding RLs in most scenarios, but only increased at the range centre and contracting RLs given local adaptation to climate

    Towards an agrobiodiversity index for sustainable food systems

    Get PDF

    Growing Income Inequality Threatens American Education

    Full text link
    The first of two articles in consecutive months describes the origins and nature of growing income inequality, and some of its consequences for American children. It documents the increased family income inequality that's occurred over the past 40 years and shows that the increased income disparity has been more than matched by an expanding gap between the amounts of money that low- and high-income parents spend on enrichment activities for their children. It also shows that the growth in income inequality has been accompanied by increasing gaps in academic achievement. The article draws from the first part of the author's recent book, Restoring Opportunity: The Crisis of Inequality and the Challenge for American Education (Harvard Education Press and the Russell Sage Foundation, 2014). The second part to the series, also drawn from Restoring Opportunity, describes ideas based on proven policy approaches that will enable the country to make progress on the enormous task of restoring the educational opportunities that children from low-income families need if they are to lead productive and fulfilling lives. © 2014

    Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Get PDF
    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 = 0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the 2-gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened to meet PRL length limit, clarified some text after referee's comment

    Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q^2 dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.Comment: 5 pages, 2 figure

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Double-Spin Asymmetry in the Cross Section for Exclusive rho^0 Production in Lepton-Proton Scattering

    Get PDF
    Evidence for a positive longitudinal double-spin asymmetry = 0.24 +-0.11 (stat) +-0.02 (syst) in the cross section for exclusive diffractive rho^0(770) vector meson production in polarised lepton-proton scattering was observed by the HERMES experiment. The longitudinally polarised 27.56 GeV HERA positron beam was scattered off a longitudinally polarised pure hydrogen gas target. The average invariant mass of the photon-proton system has a value of = 4.9 GeV, while the average negative squared four-momentum of the virtual photon is = 1.7 GeV^2. The ratio of the present result to the corresponding spin asymmetry in inclusive deep-inelastic scattering is in agreement with an early theoretical prediction based on the generalised vector meson dominance model.Comment: 10 pages, 4 embedded figures, LaTe

    Towards evolutionary predictions:Current promises and challenges

    Get PDF
    Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes. Similarly, the exact aspect of the evolved population that we want to predict may also differ. For example, we could try to predict which genotype will dominate, the fitness of the population or the extinction probability of a population. In addition, there are many uses of evolutionary predictions that may not always be recognized as such. The main goal of this review is to increase awareness of methods and data in different research fields by showing the breadth of situations in which evolutionary predictions are made. We describe how diverse evolutionary predictions share a common structure described by the predictive scope, time scale and precision. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation in biotechnology, we discuss the methods for predicting evolution, the factors that affect predictability and how predictions can be used to prevent evolution in undesirable directions or to promote beneficial evolution (i.e. evolutionary control). We hope that this review will stimulate collaboration between fields by establishing a common language for evolutionary predictions
    • 

    corecore