340 research outputs found

    A Chemical Composition Survey of the Iron-Complex Globular Cluster NGC 6273 (M 19)

    Get PDF
    Recent observations have shown that a growing number of the most massive Galactic globular clusters contain multiple populations of stars with different [Fe/H] and neutron-capture element abundances. NGC 6273 has only recently been recognized as a member of this "iron-complex" cluster class, and we provide here a chemical and kinematic analysis of > 300 red giant branch (RGB) and asymptotic giant branch (AGB) member stars using high resolution spectra obtained with the Magellan-M2FS and VLT-FLAMES instruments. Multiple lines of evidence indicate that NGC 6273 possesses an intrinsic metallicity spread that ranges from about [Fe/H] = -2 to -1 dex, and may include at least three populations with different [Fe/H] values. The three populations identified here contain separate first (Na/Al-poor) and second (Na/Al-rich) generation stars, but a Mg-Al anti-correlation may only be present in stars with [Fe/H] > -1.65. The strong correlation between [La/Eu] and [Fe/H] suggests that the s-process must have dominated the heavy element enrichment at higher metallicities. A small group of stars with low [alpha/Fe] is identified and may have been accreted from a former surrounding field star population. The cluster's large abundance variations are coupled with a complex, extended, and multimodal blue horizontal branch (HB). The HB morphology and chemical abundances suggest that NGC 6273 may have an origin that is similar to omega Cen and M 54.Comment: Accepted for Publication in The Astrophysical Journal; 50 pages; 18 figures; 8 tables; higher resolution figures are available upon request or in the published journal articl

    Exploring the Chemical Composition and Double Horizontal Branch of the Bulge Globular Cluster NGC 6569

    Get PDF
    Photometric and spectroscopic analyses have shown that the Galactic bulge cluster Terzan 5 hosts several populations with different metallicities and ages that manifest as a double red horizontal branch (HB). A recent investigation of the massive bulge cluster NGC 6569 revealed a similar, though less extended, HB luminosity split, but little is known about the cluster's detailed chemical composition. Therefore, we have used high-resolution spectra from the Magellan-M2FS and VLT-FLAMES spectrographs to investigate the chemical compositions and radial velocity distributions of red giant branch and HB stars in NGC 6569. We found the cluster to have a mean heliocentric radial velocity of -48.8 km/s (sigma = 5.3 km/s; 148 stars) and a mean [Fe/H] =-0.87 dex (19 stars), but the cluster's 0.05 dex [Fe/H] dispersion precludes a significant metallicity spread. NGC 6569 exhibits light- and heavy-element distributions that are common among old bulge/inner Galaxy globular clusters, including clear (anti)correlations between [O/Fe], [Na/Fe], and [Al/Fe]. The light-element data suggest that NGC 6569 may be composed of at least two distinct populations, and the cluster's low mean [La/Eu] = -0.11 dex indicates significant pollution with r-process material. We confirm that both HBs contain cluster members, but metallicity and light-element variations are largely ruled out as sources for the luminosity difference. However, He mass fraction differences as small as delta Y ~ 0.02 cannot be ruled out and may be sufficient to reproduce the double HB.Comment: 72 pages, 14 figures, 8 tables; published in The Astronomical Journal; electronic versions of all tables are available in the published versio

    Magellan/M2FS Spectroscopy of Galaxy Clusters: Stellar Population Model and Application to Abell 267

    Get PDF
    We report the results of a pilot program to use the Magellan/M2FS spectrograph to survey the galactic populations and internal kinematics of galaxy clusters. For this initial study, we present spectroscopic measurements for 223223 quiescent galaxies observed along the line of sight to the galaxy cluster Abell 267 (z∌0.23z\sim0.23). We develop a Bayesian method for modeling the integrated light from each galaxy as a simple stellar population, with free parameters that specify redshift (vlos/cv_\mathrm{los}/c) and characteristic age, metallicity ([Fe/H]\mathrm{[Fe/H]}), alpha-abundance ([α/Fe][\alpha/\mathrm{Fe}]), and internal velocity dispersion (σint\sigma_\mathrm{int}) for individual galaxies. Parameter estimates derived from our 1.5-hour observation of A267 have median random errors of σvlos=20 km s−1\sigma_{v_\mathrm{los}}=20\ \mathrm{km\ s^{-1}}, σAge=1.2 Gyr\sigma_{\mathrm{Age}}=1.2\ \mathrm{Gyr}, $\sigma_{\mathrm{[Fe/H]}}=0.11\ \mathrm{dex},, \sigma_{[\alpha/\mathrm{Fe}]}=0.07\ \mathrm{dex},and, and \sigma_{\sigma_\mathrm{int}}=20\ \mathrm{km\ s^{-1}}$. In a companion paper, we use these results to model the structure and internal kinematics of A267.Comment: 16 pages, 11 figures, accepted for publication in The Astronomical Journa

    AGB Sodium Abundances in the Globular Cluster 47 Tucanae (NGC 104)

    Full text link
    A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30:70 on the RGB to 100:0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globular cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high resolution spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph on the Magellan-Clay 6.5m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be =-18.56 km s^-1 (sigma=10.21 km s^-1) and =-0.68 (sigma=0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63:37 on the AGB and 45:55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction <20% of Na-rich stars in 47 Tuc may fail to ascend the AGB. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. [abridged]Comment: Accepted for publication in the Astronomical Journal; 15 pages; 8 figures; 4 table

    How Lyman Alpha Emission Depends On Galaxy Stellar Mass

    Full text link
    In this work, we show how the stellar mass (M) of galaxies affects the 3<z<4.6 Ly-alpha equivalent width (EW) distribution. To this end, we design a sample of 629 galaxies in the M range 7.6 < logM/Msun < 10.6 from the 3D-HST/CANDELS survey. We perform spectroscopic observations of this sample using the Michigan/Magellan Fiber System, allowing us to measure Ly-alpha fluxes and use 3D-HST/CANDELS ancillary data. In order to study the Ly-alpha EW distribution dependence on M, we split the whole sample in three stellar mass bins. We find that, in all bins, the distribution is best represented by an exponential profile of the form dN(M)/dEW= A(M)exp(-EW/W0(M))/W0(M). Through a Bayesian analysis, we confirm that lower M galaxies have higher Ly-alpha EWs. We also find that the fraction A of galaxies featuring emission and the e-folding scale W0 of the distribution anti- correlate with M, recovering expressions of the forms A(M)= -0.26(.13) logM/Msun+3.01(1.2) and W0(M)= -15.6(3.5) logM/Msun +166(34). These results are crucial for proper interpretation of Ly-alpha emission trends reported in the literature that may be affected by strong M selection biases.Comment: 4 pages, 5 figure

    The Most Metal-poor Stars in Omega Centauri (NGC 5139)

    Full text link
    The most massive and complex globular clusters in the Galaxy are thought to have originated as the nuclear cores of now tidally disrupted dwarf galaxies, but the connection between globular clusters and dwarf galaxies is tenuous with the M54/Sagittarius system representing the only unambiguous link. The globular cluster Omega Centauri (w Cen) is more massive and chemically diverse than M 54, and is thought to have been the nuclear star cluster of either the Sequoia or Gaia-Enceladus galaxy. Local Group dwarf galaxies with masses equivalent to these systems often host significant populations of very metal-poor stars ([Fe/H] < -2.5), and one might expect to find such objects in w Cen. Using high resolution spectra from Magellan-M2FS, we detected 11 stars in a targeted sample of 395 that have [Fe/H] ranging from -2.30 to -2.52. These are the most metal-poor stars discovered in the cluster, and are 5x more metal-poor than w Cen's dominant population. However, these stars are not so metal-poor as to be unambiguously linked to a dwarf galaxy origin. The cluster's metal-poor tail appears to contain two populations near [Fe/H] ~ -2.1 and -2.4, which are very centrally concentrated but do not exhibit any peculiar kinematic signatures. Several possible origins for these stars are discussed.Comment: AJ In press; 29 pages, 5 Figure

    “Micropersonality” traits and their implications for behavioral and movement ecology research

    Get PDF
    Many animal personality traits have implicit movement‐based definitions and can directly or indirectly influence ecological and evolutionary processes. It has therefore been proposed that animal movement studies could benefit from acknowledging and studying consistent interindividual differences (personality), and, conversely, animal personality studies could adopt a more quantitative representation of movement patterns. Using high‐resolution tracking data of three‐spined stickleback fish (Gasterosteus aculeatus), we examined the repeatability of four movement parameters commonly used in the analysis of discrete time series movement data (time stationary, step length, turning angle, burst frequency) and four behavioral parameters commonly used in animal personality studies (distance travelled, space use, time in free water, and time near objects). Fish showed repeatable interindividual differences in both movement and behavioral parameters when observed in a simple environment with two, three, or five shelters present. Moreover, individuals that spent less time stationary, took more direct paths, and less commonly burst travelled (movement parameters), were found to travel farther, explored more of the tank, and spent more time in open water (behavioral parameters). Our case study indicates that the two approaches—quantifying movement and behavioral parameters—are broadly equivalent, and we suggest that movement parameters can be viewed as “micropersonality” traits that give rise to broad‐scale consistent interindividual differences in behavior. This finding has implications for both personality and movement ecology research areas. For example, the study of movement parameters may provide a robust way to analyze individual personalities in species that are difficult or impossible to study using standardized behavioral assays

    A Giant Protocluster of Galaxies at Redshift 5.7

    Get PDF
    Galaxy clusters trace the largest structures of the Universe and provide ideal laboratories for studying galaxy evolution and cosmology. Clusters with extended X-ray emission have been discovered at redshifts up to z ~ 2.5. Meanwhile, there has been growing interest in hunting for protoclusters, the progenitors of clusters, at higher redshifts. It is, however, very challenging to find the largest protoclusters at early times when they start to assemble. Here we report a giant protocluster of galaxies at redshift z = 5.7, when the Universe was only one billion years old. This protocluster occupies a volume of about 35x35x35 cubic co-moving megaparsecs. It is embedded in an even larger overdense region with at least 41 spectroscopically confirmed, luminous Lyman-alpha emitting galaxies (Lyman-alpha Emitters, or LAEs), including several previously reported LAEs. Its LAE density is 6.6 times the average density at z ~ 5.7. It is the only one of its kind in an LAE survey in four square degrees on the sky. Such a large structure is also rarely seen in current cosmological simulations. This protocluster will collapse into a galaxy cluster with a mass of (3.6+/-0.9) x 10^{15} solar masses, comparable to those of the most massive clusters or protoclusters known to date.Comment: Published in Nature Astronomy on Oct 15, 2018 (DOI: 10.1038/s41550-018-0587-9
    • 

    corecore