24,263 research outputs found
Apparatus and method for protecting a photographic device Patent
Camera protecting device for use in photographing rocket engine nozzles or other engine component
Dual-frequency ferromagnetic resonance
We describe a new experimental technique to investigate coupling effects
between different layers or modes in ferromagnetic resonance (FMR). Dual FMR
frequencies are excited (2-8 GHz) simultaneously and detected selectively in a
broadband RF circuit, using lock-in amplifier detection at separate modulation
frequencies.Comment: 4 pages, 4 figures, accepted by "Review of Scientific Instruments",
200
Large boron--epoxy filament-wound pressure vessels
Advanced composite material used to fabricate pressure vessel is prepeg (partially cured) consisting of continuous, parallel boron filaments in epoxy resin matrix arranged to form tape. To fabricate chamber, tape is wound on form which must be removable after composite has been cured. Configuration of boron--epoxy composite pressure vessel was determined by computer program
Oscillating chiral currents in nanotubes: a route to nanoscale magnetic test tubes
With a view to optimising the design of carbon-nanotube (CNT) windmills and
to maximising the internal magnetic field generated by chiral currents, we
present analytical results for the group velocity components of an electron
flux through chiral carbon nanotubes. Chiral currents are shown to exhibit a
rich behaviour and can even change sign and oscillate as the energy of the
electrons is increased. We find that the transverse velocity and associated
angular momentum of electrons is a maximum for non-metallic CNTs with a chiral
angle of 18. Such CNTs are therefore the optimal choice for CNT windmills
and also generate the largest internal magnetic field for a given longitudinal
current. For a longitudinal current of order amps, this field can be
of order Teslas, which is sufficient to produce interesting spintronic
effects and a significant contribution to the self inductance.Comment: 4 pages, 1 figur
A cryogenic dc-dc power converter for a 100kW synchronous HTS generator at liquid nitrogen temperatures
A dc-dc converter has been developed for retrofitting inside the vacuum space of the HTS rotor of a synchronous generator. The heavy copper sections of the current leads used for energising the HTS field winding were replaced by cryogenic power electronics; consisting of the converter and a rotor control unit. The converter board was designed using an H-bridge configuration with two 5A rated wires connecting the cryogenic boards to the stator control board located on the outside of the generator and drawing power from a (5A, 50V) dc power source. The robustness of converter board was well demonstrated when it was powered up from a cold start at 82K. When charging the field winding with moderate currents (30A), the heat in-leak to the âcoldâ rotor core was only 2W. It continued to function down to 74K, surviving several quenches. However, the quench protection function failed when injecting 75A into the field winding, resulting in the burn out of one of the DC-link capacitors. The magnitudes of the critical currents measured with the original current leads were compared to the quench currents, which was defined as the current which triggered quench protection protocol. The difference between the two currents was rather large, (~20A). However, additional measurements using a single HTS coil in liquid nitrogen found that this reduction should not be so dramatic and in the region of 4A. Our conclusions identified the converterâs switching voltage and its operating frequency as two parameters, which could have contributed to lowering the quench current. Magnetic fields and eddy currents are expected to be more prominent the field winding and its impact on the converter also need further investigation
Finite-element-analysis model and preliminary ground testing of controls-structures interaction evolutionary model reflector
Results of two different nonlinear finite element analyses and preliminary test results for the final design of the Controls-Structures Interaction Evolutionary Model are presented. Load-deflection data bases are generalized from analysis and testing of the 16-foot diameter, dish shaped reflector. Natural frequencies and mode shapes are obtained from vibrational analysis. Experimental and analytical results show similar trends; however, future test hardware modifications and finite element model refinement would be necessary to obtain better correlation. The two nonlinear analysis procedures are both adequate techniques for the analysis of prestressed structures with complex geometries
Linear response separation of a solid into atomic constituents: Li, Al, and their evolution under pressure
We present the first realization of the generalized pseudoatom concept
introduced by Ball, and adopt the name enatom to minimize confusion. This
enatom, which consists of a unique decomposition of the total charge density
(or potential) of any solid into a sum of overlapping atomiclike contributions
that move rigidly with the nuclei to first order, is calculated using
(numerical) linear response methods, and is analyzed for both fcc Li and Al at
pressures of 0, 35, and 50 GPa. These two simple fcc metals (Li is fcc and a
good superconductor in the 20-40 GPa range) show different physical behaviors
under pressure, which reflects the increasing covalency in Li and the lack of
it in Al. The nonrigid (deformation) parts of the enatom charge and potential
have opposite signs in Li and Al; they become larger under pressure only in Li.
These results establish a method of construction of the enatom, whose potential
can be used to obtain a real-space understanding of the vibrational properties
and electron-phonon interaction in solids.Comment: 13 pages, 9 figures, 1 table, V2: fixed problem with Fig. 7, V3:
minor correction
- âŠ