938 research outputs found
Aging and Immortality in a Cell Proliferation Model
We investigate a model of cell division in which the length of telomeres
within the cell regulate their proliferative potential. At each cell division
the ends of linear chromosomes change and a cell becomes senescent when one or
more of its telomeres become shorter than a critical length. In addition to
this systematic shortening, exchange of telomere DNA between the two daughter
cells can occur at each cell division. We map this telomere dynamics onto a
biased branching diffusion process with an absorbing boundary condition
whenever any telomere reaches the critical length. As the relative effects of
telomere shortening and cell division are varied, there is a phase transition
between finite lifetime and infinite proliferation of the cell population.
Using simple first-passage ideas, we quantify the nature of this transition.Comment: 6 pages, 1 figure, 2-column revtex4 format; version 2: final
published form; contains various improvements in response to referee comment
Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order epsilon-expansion of generalized hypergeometric functions with one half-integer value of parameter
We continue the study of the construction of analytical coefficients of the
epsilon-expansion of hypergeometric functions and their connection with Feynman
diagrams. In this paper, we show the following results:
Theorem A: The multiple (inverse) binomial sums of arbitrary weight and depth
(see Eq. (1.1)) are expressible in terms of Remiddi-Vermaseren functions.
Theorem B: The epsilon expansion of a hypergeometric function with one
half-integer value of parameter (see Eq. (1.2)) is expressible in terms of the
harmonic polylogarithms of Remiddi and Vermaseren with coefficients that are
ratios of polynomials. Some extra materials are available via the www at this
http://theor.jinr.ru/~kalmykov/hypergeom/hyper.htmlComment: 24 pages, latex with amsmath and JHEP3.cls; v2: some typos corrected
and a few references added; v3: few references added
Ce and U speciation in wasteforms for thermal treatment of plutonium bearing wastes, probed by L3 edge XANES
X-ray absorption spectroscopy was applied to understand the speciation of elements relevant to the immobilisation and disposal of radioactive plutonium bearing wastes, utilizing Ce as a Pu surrogate. Ce L3 XANES (X-ray Absorption Near Edge Structure) characterisation of a crystallised glass material produced by cold crucible plasma vitrification, at demonstration scale, evidenced incorporation as Ce3+ within the glass phase, providing an important validation of laboratory scale studies. U and Ce L3 XANES investigation of brannerite ceramics, U0.9Ce0.1Ti2O6, synthesized under oxidizing, neutral and reducing conditions, established the charge compensation mechanism as incorporation of Ce3+ through formation of U5+ and/or U6+ In each of these examples, X-ray Absorption Spectroscopy has provided a pivotal understanding of element speciation in relation to the mechanism of incorporation within the host wasteform intended for geological disposal
Ionic encapsulation of a methanol carbonylation catalyst in a microporous metal–organic framework
The anionic rhodium complex cis-[Rh(CO)2I2]−, active in the Monsanto process for acetic acid production, has been heterogenised via Coulombic interactions in the pores of a UiO-66-type metal–organic framework (MOF). The MOF-supported catalyst is active for the carbonylation of methanol and is recyclable, retaining its framework crystallinity following catalysis. Intermediates in the catalytic cycle observed by IR spectroscopy confirm the same mechanism as the established homogeneous process
Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases.
Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. IMPORTANCE: Understanding bacterial growth and division is a fundamental problem, and knowledge in this area underlies the treatment of many infectious diseases. Almost all bacteria are surrounded by a macromolecule of peptidoglycan that encloses the cell and maintains shape, and bacterial cells must increase the size of this molecule in order to enlarge themselves. This requires not only the insertion of new peptidoglycan monomers, a process targeted by antibiotics, including penicillin, but also breakage of existing bonds, a potentially hazardous activity for the cell. Using Staphylococcus aureus, we have identified a set of enzymes that are critical for cellular enlargement. We show that these enzymes are required for normal growth and define the mechanism through which cellular enlargement is accomplished, i.e., by breaking bonds in the peptidoglycan, which reduces the stiffness of the cell wall, enabling it to stretch and expand, a process that is likely to be fundamental to many bacteria
Radial velocity variability and stellar properties of FGK stars in the cores of NGC 2516 and NGC 2422
Stars and planetary system
Critical structure factor in Ising systems
We perform a large-scale Monte Carlo simulation of the three-dimensional
Ising model on simple cubic lattices of size L^3 with L=128 and 256. We
determine the corresponding structure factor (Fourier transform of the
two-point function) and compare it with several approximations and with
experimental results. We also compute the turbidity as a function of the
momentum of the incoming radiation, focusing in particular on the deviations
from the Ornstein-Zernicke expression of Puglielli and Ford.Comment: 16 page
Detection of a Population of Carbon-enhanced Metal-poor Stars in the Sculptor Dwarf Spheroidal Galaxy
Stars and planetary system
Spin-gravity coupling and gravity-induced quantum phases
External gravitational fields induce phase factors in the wave functions of
particles. The phases are exact to first order in the background gravitational
field, are manifestly covariant and gauge invariant and provide a useful tool
for the study of spin-gravity coupling and of the optics of particles in
gravitational or inertial fields. We discuss the role that spin-gravity
coupling plays in particular problems.Comment: 18 pages, 1 figur
Salinity tolerance of diapausing eggs of freshwater zooplankton
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73091/1/j.1365-2427.2004.01185.x.pd
- …