886 research outputs found

    Controls-structures-electromagnetics interaction program

    Get PDF
    A technology development program is described involving Controls Structures Electromagnetics Interaction (CSEI) for large space structures. The CSEI program was developed as part of the continuing effort following the successful kinematic deployment and RF tests of the 15 meter Hoop/Column antenna. One lesson learned was the importance of making reflector surface adjustment after fabrication and deployment. Given are program objectives, ground based test configuration, Intelsat adaptive feed, reflector shape prediction model, control experiment concepts, master schedule, and Control Of Flexible Structures-II (COFS-II) baseline configuration

    Summary of Almost 20 Years of Storm Overflight Electric Field, Conductivity, Flash Rate, and Current Statistics

    Get PDF
    We present total conduction (Wilson) currents for more than 1000 high-altitude aircraft overflights of electrified clouds acquired over nearly two decades. The overflights include a wide geographical sample of storms over land and ocean, with and without lightning, and with positive (i.e., upward-directed) and negative current. Peak electric field, with lightning transients removed, ranged from -1.0 kV/m to 16. kV/m, with mean (median) of 0.9 kV/m (0.29 kV/m). Total conductivity at flight altitude ranged from 0.6 pS/m to 3.6 pS/m, with mean and median of 2.2 pS/m. Peak current densities ranged from -2.0 nA m(exp -2) to 33.0 nA m(exp -2) with mean (median) of 1.9 nA m(exp -2) (0.6 nA m(exp -2)). Total upward current flow from storms in our dataset ranged from -1.3 to 9.4 A. The mean current for storms with lightning is 1.7 A over ocean and 1.0 A over land. The mean current for electrified shower clouds (i.e. electrified storms without lightning) is 0.41 A for ocean and 0.13 A for land. About 78% (43%) of the land (ocean) storms have detectable lightning. Land storms have 2.8 times the mean flash rate as ocean storms (2.2 versus 0.8 flashes min-1, respectively). Approximately 7% of the overflights had negative current. The mean and median currents for positive (negative) polarity storms are 1.0 and 0.35 A (-0.30 and -0.26 A). We found no regional or latitudinal-based patterns in our storm currents, nor support for simple scaling laws between cloud top height and lightning flash rate

    Summary of Almost 20 Years of Storm Overflight Electric Field, Conductivity, Flash Rates, and Electric Current Statistics

    Get PDF
    We determined total conduction currents and flash rates for around 900 high-altitude aircraft overflights of electrified clouds over 17 years. The overflights include a wide geographical sample of storms over land and ocean, with and without lightning, and with positive (i.e., upward-directed) and negative current. Peak electric field, with lightning transients removed, ranged from -1.0 kV m(sup -1) to 16. kV m(sup -1), with mean (median) of 0.9 kV m(sup -1) (0.29 kV m(sup -1)). Total conductivity at flight altitude ranged from 0.6 pS m(sup -1) to 3.6 pS m(sup -1), with mean and median of 2.2 pS m(sup -1). Peak current densities ranged from -2.0 nA m(sup -2) to 33.0 nA m(sup -2) with mean (median) of 1.9 nA m(sup -2) (0.6 nA m(sup -2)). Total upward current flow from storms in our dataset ranged from -1.3 to 9.4 A. The mean current for storms with lightning is 1.6 A over ocean and 1.0 A over land. The mean current for electrified shower clouds (i.e. electrified storms without lightning) is 0.39 A for ocean and 0.13 A for land. About 78% (43%) of the land (ocean) storms have detectable lightning. Land storms have 2.8 times the mean flash rate as ocean storms (2.2 versus 0.8 flashes min(sup -1), respectively). Approximately 7% of the overflights had negative current. The mean and median currents for positive (negative) polarity storms are 1.0 and 0.35 A (-0.30 and -0.26 A). We found no regional or latitudinal-based patterns in our storm currents, nor support for simple scaling laws between cloud top height and lightning flash rate

    Multi-Sensor Field Studies of Lightning and Implications for MTG-LI

    Get PDF
    Future geostationary satellite systems will offer a variety of improved observing capabilities which will be extremely useful for many applications like numerical weather forecasting, nowcasting of severe weather, climate research or hydrology. The planning for MTG (Meteosat Third Generation) includes an optical lightning imager (LI) as part of the payload. One requirement for a proper interpretation of these optical data is a better understanding of what components of a flash are to be seen from space and how these observations relate to ground based radio frequency observations. Therefore, the objectives of the present study concern the improvement of the understanding of the complex lightning process which then enables a proper interpretation of the optical data. For assessing the future performances and benefits of a geostationary lightning sensor this study takes advantage of the comprehensive lightning data sets obtained from the recent CHUVA field experiment performed in Brazil. (CHUVA - Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)). During the rainy season of 2011-2012 a large number of ground based lightning detection systems was set up in the Sao Paulo area in Brazil. In the present study we look at the detailed radio frequency (RF) based observation from LINET (Lightning detection network operated by DLR, nowcast and USP) and observing strokes in the VLF/LF (very low and low frequency) range, the LMA (Lightning mapping array) from NASA observing RF sources in the VHF (very high frequency) range and the TRMM-LIS (Tropical Rainfall Measuring Mission-Lightning Imaging Sensor) optical space borne lightning imager. The LIS is used as a reference instrument for the future MTG-LI sensor as well as for the corresponding GLM sensor (Geostationary Lightning Mapper) on GOES-R. Thus it is possible to study the relations between the RF and optical signals from lightning in detail and to assess the performance of the future geostationary observations from a set of proxy satellite data generated from the ground based observations. In confirmation of previous studies, it was found that often a direct temporal coincidence of RF signals (LINET strokes) and optical pulses (LIS groups) exists. The short baseline configuration of LINET allowed to observe the strokes mapping the flash branches similar to LMA, but by locating the limited number of strong cloud strokes rather than a large number of weak source points from leader steps. An initial breakdown phase of vertically propagating sources can often be found in LINET and LMA data. The higher level LINET and LMA signals have higher probability to be optically detected. Lower level LINET and LMA signals are optically detected from above in case of missing high level precipitation as inferred from radar observations provided by USP. The new comprehensive data set allows for constructing proxy data for the future geostationary lightning mappers

    Description and Status of the DC Lightning Mapping Array

    Get PDF
    The DC Lightning Mapping Array (DC LMA) centered on the Washington, DC metro region has been in operation since 2006. During that time the DC LMA has provided real time data to regional National Weather Service (NSF) Sterling, VA forecast office for operations support and the NOAA Meteorological Development Laboratory (MDL) for new product development and assessment. Data from this network (as well as other from other LMA systems) are now being used to create proxy Geostationary Lightning Mapper (GLM) data sets for GOES-R risk reduction and algorithm development activities. In addition, since spring 2009 data are provided to the Storm Prediction Center in support of Hazardous Weather Testbed and GOES-R Proving Ground activities during the Spring Program. Description, status and plans will be discussed

    Photodynamic therapy for acne vulgaris: a randomized, controlled, split-face clinical trial of topical aminolevulinic acid and pulsed dye laser therapy

    Full text link
    There remains the need for more effective therapeutic options to treat acne vulgaris. Interest in light-based acne treatments has increased, but few randomized, controlled clinical trials assessing the value of photodynamic therapy (PDT) for acne have been reported.We sought to examine the efficacy of PDT using 5-aminolevulinic acid (ALA) and pulsed dye laser therapy in the treatment of acne.We conducted a randomized, controlled, split-face, single-blind clinical trial of 44 patients with facial acne. Patients were randomized to receive three pulsed dye laser treatments to one side of the face after a 60–90 min ALA application time, while the contralateral side remained untreated and served as a control. Serial blinded lesion counts and global acne severity ratings were performed.Global acne severity ratings improved bilaterally with the improvement noted to be statistically significantly greater in treated skin than in untreated skin. Erythematous macules (remnants of previously active inflammatory lesions) decreased in number in treated skin when compared with control skin and there was a transient but significant decrease in inflammatory papules in treated skin when compared with untreated skin. There were no other statistically significant differences between treated and untreated sides of the face in terms of counts of any subtype of acne lesion. Thirty percent of patients were deemed responders to this treatment with respect to improvement in their inflammatory lesion counts, while only 7% of patients responded in terms of noninflammatory lesion counts.PDT with the treatment regimen employed here may be beneficial for a subgroup of patients with inflammatory acne.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79403/1/j.1473-2165.2010.00483.x.pd

    Effect of Carbon Dioxide on the Twinkling Artifact in Ultrasound Imaging of Kidney Stones: A Pilot Study

    Get PDF
    Bone demineralization, dehydration and stasis put astronauts at increased risk of forming kidney stones in space. The color-Doppler ultrasound "twinkling artifact," which highlights kidney stones with color, can make stones readily detectable with ultrasound; however, our previous results suggest twinkling is caused by microbubbles on the stone surface which could be affected by the elevated levels of carbon dioxide found on space vehicles. Four pigs were implanted with kidney stones and imaged with ultrasound while the anesthetic carrier gas oscillated between oxygen and air containing 0.8% carbon dioxide. On exposure of the pigs to 0.8% carbon dioxide, twinkling was significantly reduced after 9-25 min and recovered when the carrier gas returned to oxygen. These trends repeated when pigs were again exposed to 0.8% carbon dioxide followed by oxygen. The reduction of twinkling caused by exposure to elevated carbon dioxide may make kidney stone detection with twinkling difficult in current space vehicles

    Description and Status of the North Alabama Lightning Mapping Array

    Get PDF
    The North Alabama Lightning Mapping Array (LMA) is a network LMA detectors that detects and maps lightning using VHF radiation (TV Channel 5) in a region centered about Huntsville, Alabama that includes North Alabama, Central Tennessee and parts of Georgia and Mississippi. The North Alabama LMA has been in operation since late 2001, and has been providing real time data to regional National Weather Service (NSF) Weather Forecast Offices (WFOs) since mid 2003 through the NASA Short-term Prediction Research and Transition (SPoRT) center. Data from this network (as well as other from other LMA systems) are now being used to create proxy Geostationary Lightning Mapper (GLM) data sets for GOES-R risk reduction and algorithm development activities. In addition, since spring 2009 data are provided to the Storm Prediction Center in support of Hazardous Weather Testbed and GOES-R Proving Ground activities during the Spring Program. Description, status and plans will be discussed
    corecore