26 research outputs found

    ORF6 and ORF61 Expressing MVA Vaccines Impair Early but Not Late Latency in Murine Gammaherpesvirus MHV-68 Infection

    Get PDF
    Gammaherpesviruses (gamma HV) are important pathogens causing persistent infections which lead to several malignancies in immunocompromised patients. Murine gamma HV 68 (MHV-68), a homolog to human EBV and KSHV, has been employed as a classical pathogen to investigate the molecular pathogenicity of gamma HV infections. gamma HV express distinct antigens during lytic or latent infection and antigen-specific T cells have a significant role in controlling the acute and latent viral infection, although the quality of anti-viral T cell responses required for protective immunity is not well-understood. We have generated recombinant modified vaccinia virus Ankara (recMVA) vaccines via MVA-BAC homologous recombination technology expressing MHV-68 ORF6 and ORF61 antigens encoding both MHC class I and II-restricted epitopes. After vaccination, we examined T cell responses before and after MHV-68 infection to determine their involvement in latent virus control. We show recognition of recMVA- and MHV-68-infected APC by ORF6 and ORF61 epitope-specific T cell lines in vitro. The recMVA vaccines efficiently induced MHV-68-specific CD8+ and CD4+ T cell responses after a single immunization and more pronounced after homologous prime/boost vaccination in mice. Moreover, we exhibit protective capacity of prophylactic recMVA vaccination during early latency at day 17 after intranasal challenge with MHV-68, but failed to protect from latency at day 45. Further T cell analysis indicated that T cell exhaustion was not responsible for the lack of protection by recMVA vaccination in long-termlatency at day 45. The data support further efforts aiming at improved vaccine development against gamma HV infections with special focus on targeting protective CD4+ T cell responses

    Effect of combined siRNA of HCV E2 gene and HCV receptors against HCV

    Get PDF
    <p>Abstract</p> <p>Background/Aim</p> <p>Hepatitis C virus (HCV) is a major threat as almost 3% of the world's population (350 million individual) and 10% of the Pakistani population is chronically infected with this virus. RNA interference (RNAi), a sequence-specific degradation process of RNA, has potential to be used as a powerful alternative molecular therapeutic approach in spite of the current therapy of interferon-α and ribavirin against HCV which has limited efficiency. HCV structural gene E2 is mainly involved in viral cell entry via attachment with the host cell surface receptors i.e., CD81 tetraspanin, low density lipoprotein receptor (LDLR), scavenger receptor class B type 1 (SR-B1), and Claudin1 (CLDN1). Considering the importance of HCV E2 gene and cellular receptors in virus infection and silencing effects of RNAi, the current study was designed to target the cellular and viral factors as new therapeutic options in limiting HCV infection.</p> <p>Results</p> <p>In this study the potential of siRNAs to inhibit HCV-3a replication in serum-infected Huh-7 cells was investigated by combined treatment of siRNAs against the HCV E2 gene and HCV cellular receptors (CD81 and LDLR), which resulted in a significant decrease in HCV viral copy number.</p> <p>Conclusion</p> <p>From the current study it is concluded that the combined RNAi-mediated silencing of HCV E2 and HCV receptors is important for the development of effective siRNA-based therapeutic option against HCV-3a.</p

    Separate domains of G3BP promote efficient clustering of alphavirus replication complexes and recruitment of the translation initiation machinery

    Get PDF
    Author summary In order to repel viral infections, cells activate stress responses. One such response involves inhibition of translation and restricted availability of the translation machinery via the formation of stress granules. However, the host translation machinery is absolutely essential for synthesis of viral proteins and consequently viruses have developed a broad spectrum of strategies to circumvent this restriction. Old World alphaviruses, such as Semliki Forest virus (SFV) and chikungunya virus (CHIKV), interfere with stress granule formation by sequestration of G3BP, a stress granule nucleating protein, mediated by the viral non-structural protein 3 (nsP3). Here we show that nsP3:G3BP complexes engage factors of the host translation machinery, which during the course of infection accumulate in the vicinity of viral replication complexes. Accordingly, we demonstrate that the nsP3:G3BP interaction is required for high localized translational activity around viral replication complexes. We find the RGG domain of G3BP to be essential for the recruitment of the host translation machinery. In cells expressing mutant G3BP lacking the RGG domain, SFV replication was attenuated, but detectable, while CHIKV was essentially non-viable. Our data demonstrate a novel mechanism by which viruses can recruit factors of the translation machinery in a G3BP-dependent manner.Peer reviewe

    Data_Sheet_2_ORF6 and ORF61 Expressing MVA Vaccines Impair Early but Not Late Latency in Murine Gammaherpesvirus MHV-68 Infection.pdf

    No full text
    Gammaherpesviruses (γHV) are important pathogens causing persistent infections which lead to several malignancies in immunocompromised patients. Murine γHV 68 (MHV-68), a homolog to human EBV and KSHV, has been employed as a classical pathogen to investigate the molecular pathogenicity of γHV infections. γHV express distinct antigens during lytic or latent infection and antigen-specific T cells have a significant role in controlling the acute and latent viral infection, although the quality of anti-viral T cell responses required for protective immunity is not well-understood. We have generated recombinant modified vaccinia virus Ankara (recMVA) vaccines via MVA-BAC homologous recombination technology expressing MHV-68 ORF6 and ORF61 antigens encoding both MHC class I and II-restricted epitopes. After vaccination, we examined T cell responses before and after MHV-68 infection to determine their involvement in latent virus control. We show recognition of recMVA- and MHV-68-infected APC by ORF6 and ORF61 epitope-specific T cell lines in vitro. The recMVA vaccines efficiently induced MHV-68-specific CD8+ and CD4+ T cell responses after a single immunization and more pronounced after homologous prime/boost vaccination in mice. Moreover, we exhibit protective capacity of prophylactic recMVA vaccination during early latency at day 17 after intranasal challenge with MHV-68, but failed to protect from latency at day 45. Further T cell analysis indicated that T cell exhaustion was not responsible for the lack of protection by recMVA vaccination in long-term latency at day 45. The data support further efforts aiming at improved vaccine development against γHV infections with special focus on targeting protective CD4+ T cell responses.</p

    Data_Sheet_1_ORF6 and ORF61 Expressing MVA Vaccines Impair Early but Not Late Latency in Murine Gammaherpesvirus MHV-68 Infection.pdf

    No full text
    Gammaherpesviruses (γHV) are important pathogens causing persistent infections which lead to several malignancies in immunocompromised patients. Murine γHV 68 (MHV-68), a homolog to human EBV and KSHV, has been employed as a classical pathogen to investigate the molecular pathogenicity of γHV infections. γHV express distinct antigens during lytic or latent infection and antigen-specific T cells have a significant role in controlling the acute and latent viral infection, although the quality of anti-viral T cell responses required for protective immunity is not well-understood. We have generated recombinant modified vaccinia virus Ankara (recMVA) vaccines via MVA-BAC homologous recombination technology expressing MHV-68 ORF6 and ORF61 antigens encoding both MHC class I and II-restricted epitopes. After vaccination, we examined T cell responses before and after MHV-68 infection to determine their involvement in latent virus control. We show recognition of recMVA- and MHV-68-infected APC by ORF6 and ORF61 epitope-specific T cell lines in vitro. The recMVA vaccines efficiently induced MHV-68-specific CD8+ and CD4+ T cell responses after a single immunization and more pronounced after homologous prime/boost vaccination in mice. Moreover, we exhibit protective capacity of prophylactic recMVA vaccination during early latency at day 17 after intranasal challenge with MHV-68, but failed to protect from latency at day 45. Further T cell analysis indicated that T cell exhaustion was not responsible for the lack of protection by recMVA vaccination in long-term latency at day 45. The data support further efforts aiming at improved vaccine development against γHV infections with special focus on targeting protective CD4+ T cell responses.</p
    corecore